• 제목/요약/키워드: Large dynamic range

검색결과 287건 처리시간 0.024초

Out-of-Band Measurement of LED-based Solar Blind UV Filters

  • Cui, Muhan;Zhou, Yue;Chen, Xue;Yan, Feng;Zhang, Mingchao;Yang, Huaijiang
    • Journal of the Optical Society of Korea
    • /
    • 제18권3호
    • /
    • pp.244-250
    • /
    • 2014
  • Due to the difficulty in measuring very low out-of-band cutoff depths of solar blind UV filters, we propose a cutoff depth adjustable measurement system (CDAM) to test deep cutoff filters with a large dynamic range. The CDAM utilizing the substitution method is elaborately composed of several parts, including narrow-band LED light sources, standard reflective neutral attenuators with known attenuation coefficients, and a photomultiplier (PMT). This paper also presents an attenuator combination method ensuring that the PMT works within its linear response range. In addition, numerical simulation testifies to the method, and experiment shows that the CDAM system can achieve an extension of dynamic range from 0-6 OD to 0-10 OD, which is sufficient for the measurement of out-of-band cutoff depths of solar blind UV filters. Above all, the CDAM system, being easily implemented, of wide dynamic range, and highly precise, could be widely used in the measurement of filter cutoff depth.

AISI 316 스테인리스강의 고온 변형특성에 관한 연구 (Rot Deformation Behavior of AISI 316 Stainless Steel)

  • 김성일;유연철
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2001년도 추계학술대회 논문집
    • /
    • pp.293-296
    • /
    • 2001
  • The dynamic softening mechanisms of AISI 316, AISI 304 and AISI 430 stainless steels were studied with torsion test in the temperature range of $900 - 1200^{\circ}C$ and the strain rate range of $5.0x10^{-2}-5.0x10^0/sec$. The austenitic stainless steels, such as AISI 316 and AISI 304 were softened by dynamic recrystallization (DRX) during hot deformation. Also, the evolutions of flow stress and microstructure of AISI 430 ferritic stainless steel show the characteristics of continuous dynamic recrystallization (CDRX). To establish the quantitative equations for DRX of AISI 316 stainless steel, the evolution of flow stress curve with strain was analyzed. The critical strain (${\varepsilon}_c$) and strain for maximum softening rate (${\varepsilon}^{*}$) could be confirmed by the analysis of work hardening rate ($d{\sigma}/d{\varepsilon}={\theta}$). The volume fraction of dynamic recrystallization ($X_{DRX}$) as a function of processing variables, such as strain rate ( $\varepsilon$ ), temperature (T), and strain ( $\varepsilon$ ) were established using the ${\epsilon}_c$ and ${\varepsilon}^{*}$. For the exact prediction the ${\varepsilon}_c,\;{\varepsilon}^{*}$ and Avrami' exponent (m') were quantitatively expressed by dimensionless parameter, Z/A, respectively. It was found that the calculated results were agreed with the experimental data for the steels at my deformation conditions. Also, we can reasonably conclude that the DRX, CDRX and grain refinement of stainless steels can be achieved by large strain deformation at high Z parameter condition.

  • PDF

수치적 방법에 의한 승용차 동적해석 (Dynamic analysis of vehicle system using numerical method)

  • 이종원;박윤식;조영호
    • 오토저널
    • /
    • 제5권3호
    • /
    • pp.45-55
    • /
    • 1983
  • This paper discussed about Application Technique of Numerical Methods for large structure. The dynamic behaviours of a vehicle were investigated through finite element modelling. After dividing a vehicle body into three substructures, Basic Mass System was composed of 60 flexual modes which was obtained from the dynamic characteristics of each substructure using Modal Synthesis Method. Engine, transmission and rear axle, etc. were added to Basic Mass Model, consequently Full Mass System was constructed by 72 degree of freedoms. Full Mass System was analyzed over the frequency range 0.5-50.0 Hz under the loading conditions which were Stationary Gaussian Random Process. Results and discussions provided the guidelines to eliminate resonances among the parts and to improve the Ride Quality. The Absorbed Power was used as a standard to determine the Ride Quality. The RMS value of driver's vertical acceleration was obtained 0.423g from the basic model and 0.415g from the modified model.

  • PDF

AN ANALYTICAL STUDY ON THE DYNAMIC CHARACTERISTICS OF A LIQUID PROPULSION SYSTEM

  • Lee Han Ju;Lim Seok Hee;Jung Dong Ho;Kim Yong Wook;Oh Seung Hyub
    • 한국우주과학회:학술대회논문집(한국우주과학회보)
    • /
    • 한국우주과학회 2004년도 한국우주과학회보 제13권2호
    • /
    • pp.325-327
    • /
    • 2004
  • The longitudinal instability (POGO) of the rocket should not be occurred during the whole flight time for the large class liquid propulsion system to complete a mission successfully. The longitudinal instability is caused by the resonance between the propulsion system and rocket structure in the low frequency range below 50Hz, ordinarily. Analysis on the low frequency dynamic characteristics on the liquid propulsion system with staged combustion cycle engine system was performed as a preliminary study on the longitudinal instability analysis.

  • PDF

Continuous element method for aeroacoustics' waves in confined ducts

  • Khadimallah, Mohamed A.;Harbaoui, Imene;Casimir, Jean B.;Taieb, Lamjed H.;Hussain, Muzamal;Tounsi, Abdelouahed
    • Advances in nano research
    • /
    • 제13권4호
    • /
    • pp.341-350
    • /
    • 2022
  • The continuous elements method, also known as the dynamic stiffness method, is effective for solving structural dynamics problems, especially over a large frequency range. Before applying this method to fluid-structure interactions, it is advisable to check its validity for pure acoustics, without considering the different coupling parameters. This paper describes a procedure for taking wave propagation into account in the formulation of a Dynamic Stiffness Matrix. The procedure is presented in the context of the harmonic response of acoustic pressure. This development was validated by comparing the harmonic response calculations performed using the continuous element model with the analytical solution. In addition, this paper illustrates the application of this method to a simple compressible flow problem, since it has been applied solely to structural problems to date.

고-휘도 텔레비전 방송을 위한 개선된 빠른 휘도 조절 기법 (Enhanced Fast Luma Adjustment for High Dynamic Range Television Broadcasting)

  • 오경석;김용구
    • 방송공학회논문지
    • /
    • 제23권2호
    • /
    • pp.302-315
    • /
    • 2018
  • 지각 양자기 광전 변환 함수의 생략 Taylor 급수를 이용한 선형 근사는 휘도 조절 기법의 하드웨어 구현에 적합한 폐쇄형 솔루션을 제공할 수 있지만, 600~3,900 cd/m2 구간의 선형 영역 광 신호에 대해 상대적으로 큰 근사 오차를 유발한다. 이러한 비-선형 광전 변환 함수의 근사 오차 개선을 위해, 본 논문에서는 새로운 선형 모델을 제안한다. 제안된 선형 근사 모델은 그 근사 범위를 고려한 직선의 위치 교정 및 기울기 산출을 수행한다. 제안 모델의 성능 검증을 위해, 다양한 고-휘도 실험 시퀀스를 대상으로 모의실험을 수행하였고, 이를 통해 채도가 높은 색상을 포함하는 시퀀스에 대해서는, Taylor 급수를 기반으로 한 기존의 선형 모델에 비해, 휘도 신호의 t-PSNR을 4.65dB 만큼 개선할 수 있는 높은 성능 향상을 확인하였다.

동다짐 공법의 유효다짐깊이 결정에 영향을 주는 인자 분석 (Analysis of Influence Parameters to Evaluate the Effective Depth of Improvement of Dynamic Compaction Method)

  • 김홍택;이혁진;박인준
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2004년도 춘계학술발표회
    • /
    • pp.659-666
    • /
    • 2004
  • Dynamic compaction has evolved as an acceptable method of site improvement by treating poor soils in situ. The method is often an economical alternative for utilizing shallow foundations and preparing subgrades for construction when compared with conventional solutions. In general, the installation purpose of dynamic compaction are to increase bearing capacity and decrease differential settlement within a specified depth of improvement. This method involves the s systematically dropping large weights onto the ground surface to compact the underlying ground. The weights used on dynamic compaction projects have been typically constructed of steel plates, sand or concrete filled steel shells, and reinforced concrete. Typically, weights range from 5-20 ton and base configurations are, circular or octagonal. In this study, the effective depth of improvement is evaluated based on the numerical analysis code, the dynamic analysis of FLAC-3D program, in order to analyze the influence parameters ; ground conditions, maximum applied load and the area of compaction plate.

  • PDF

Rheology of concentrated xanthan gum solutions: Oscillatory shear flow behavior

  • Song Ki-Won;Kuk Hoa-Youn;Chang Gap-Shik
    • Korea-Australia Rheology Journal
    • /
    • 제18권2호
    • /
    • pp.67-81
    • /
    • 2006
  • Using a strain-controlled rheometer, the dynamic viscoelastic properties of aqueous xanthan gum solutions with different concentrations were measured over a wide range of strain amplitudes and then the linear viscoelastic behavior in small amplitude oscillatory shear flow fields was investigated over a broad range of angular frequencies. In this article, both the strain amplitude and concentration dependencies of dynamic viscoelastic behavior were reported at full length from the experimental data obtained from strain-sweep tests. In addition, the linear viscoelastic behavior was explained in detail and the effects of angular frequency and concentration on this behavior were discussed using the well-known power-law type equations. Finally, a fractional derivative model originally developed by Ma and Barbosa-Canovas (1996) was employed to make a quantitative description of a linear viscoelastic behavior and then the applicability of this model was examined with a brief comment on its limitations. Main findings obtained from this study can be summarized as follows: (1) At strain amplitude range larger than 10%, the storage modulus shows a nonlinear strain-thinning behavior, indicating a decrease in storage modulus as an increase in strain amplitude. (2) At strain amplitude range larger than 80%, the loss modulus exhibits an exceptional nonlinear strain-overshoot behavior, indicating that the loss modulus is first increased up to a certain strain amplitude(${\gamma}_0{\approx}150%$) beyond which followed by a decrease in loss modulus with an increase in strain amplitude. (3) At sufficiently large strain amplitude range (${\gamma}_0>200%$), a viscous behavior becomes superior to an elastic behavior. (4) An ability to flow without fracture at large strain amplitudes is one of the most important differences between typical strong gel systems and concentrated xanthan gum solutions. (5) The linear viscoelastic behavior of concentrated xanthan gum solutions is dominated by an elastic nature rather than a viscous nature and a gel-like structure is present in these systems. (6) As the polymer concentration is increased, xanthan gum solutions become more elastic and can be characterized by a slower relaxation mechanism. (7) Concentrated xanthan gum solutions do not form a chemically cross-linked stable (strong) gel but exhibit a weak gel-like behavior. (8) A fractional derivative model may be an attractive means for predicting a linear viscoelastic behavior of concentrated xanthan gum solutions but classified as a semi-empirical relationship because there exists no real physical meaning for the model parameters.

Vision-based Input-Output System identification for pedestrian suspension bridges

  • Lim, Jeonghyeok;Yoon, Hyungchul
    • Smart Structures and Systems
    • /
    • 제29권5호
    • /
    • pp.715-728
    • /
    • 2022
  • Recently, numbers of long span pedestrian suspension bridges have been constructed worldwide. While recent tragedies regarding pedestrian suspension bridges have shown how these bridges can wreak havoc on the society, there are no specific guidelines for construction standards nor safety inspections yet. Therefore, a structural health monitoring system that could help ensure the safety of pedestrian suspension bridges are needed. System identification is one of the popular applications for structural health monitoring method, which estimates the dynamic system. Most of the system identification methods for bridges are currently adapting output-only system identification method, which assumes the dynamic load to be a white noise due to the difficulty of measuring the dynamic load. In the case of pedestrian suspension bridges, the pedestrian load is within specific frequency range, resulting in large errors when using the output-only system identification method. Therefore, this study aims to develop a system identification method for pedestrian suspension bridges considering both input and output of the dynamic system. This study estimates the location and the magnitude of the pedestrian load, as well as the dynamic response of the pedestrian bridges by utilizing artificial intelligence and computer vision techniques. A simulation-based validation test was conducted to verify the performance of the proposed system. The proposed method is expected to improve the accuracy and the efficiency of the current inspection and monitoring systems for pedestrian suspension bridges.

주사 현미경용 평면 스캐너 Part 1 :설계 및 정 · 동특성 해석 (A Flexure Guided Planar Scanner for Scanning Probe Microscope ; Part 1 : Design and Analysis of Static and Dynamic Properties)

  • 이동연;이무연
    • 한국소음진동공학회논문집
    • /
    • 제15권6호
    • /
    • pp.667-673
    • /
    • 2005
  • This paper shows a method for design of the nano-positioning planar scanner used in the scanning probe microscope. The planar scanner is composed of flexure guides, piezoelectric actuators and feedback sensors. In the design of flexure guides, the Castigliano's theorem was used to find the stiffness of the guide. The motion amplifying mechanism was used in the piezoelectric actuator to achieve a large travel range. We found theoretically the travel range of the total system and verified using the commercial FEM(finite element method) program. The maximum travel range of the planar scanner is above than 140 $\mu$m. The 3 axis positioning capability was verified by the mode analysis using the FEM program.