• 제목/요약/키워드: Large container ship

검색결과 160건 처리시간 0.029초

Development of Preliminary Design Model for Ultra-Large Container Ships by Genetic Algorithm

  • Han, Song-I;Jung, Ho-Seok;Cho, Yong-Jin
    • International Journal of Ocean System Engineering
    • /
    • 제2권4호
    • /
    • pp.233-238
    • /
    • 2012
  • In this study, we carried out a precedent investigation for an ultra-large container ship, which is expected to be a higher value-added vessel. We studied a preliminary optimized design technique for estimating the principal dimensions of an ultra-large container ship. Above all, we have developed optimized dimension estimation models to reduce the building costs and weight, using previous container ships in shipbuilding yards. We also applied a generalized estimation model to estimate the shipping service costs. A Genetic Algorithm, which utilized the RFR (required freight rate) of a container ship as a fitness value, was used in the optimization technique. We could handle uncertainties in the shipping service environment using a Monte-Carlo simulation. We used several processes to verify the estimated dimensions of an ultra-large container ship. We roughly determined the general arrangement of an ultra-large container ship up to 1500 TEU, the capacity check of loading containers, the weight estimation, and so on. Through these processes, we evaluated the possibility for the practical application of the preliminary design model.

초대형 컨테이너선의 거주구역 재배치에 대한 경제성 평가 (Economic evaluation for the re-arrangement of accommodation house in ultra large container ship)

  • 임남균;최경순
    • 한국항해항만학회지
    • /
    • 제29권6호
    • /
    • pp.529-536
    • /
    • 2005
  • 최근 들어 초대형 선박에 대한 논의가 활발해진 가운데 선사들은 선박 대형화에 의한 규모의 경제 효과를 꾸준히 추구하고 있다. 기술과 경제성이 보장되는 한 당분간 이러한 선박 대형화의 추세는 지속될 전망이다. 선박대형화에 따라 거주공간의 위치변화에 대한 필요성이 조심스럽게 제기되고 있다. 본 논문은 초대형 컨테이너선의 거주 공간 재배치에 따른 경제성 평가 분석에 관한 내용을 다루었다. 선박의 초기 설계 단계에서, 도면 생성의 보완과 검증을 통하여 거주구역과 엔진실의 공간을 분리하는 제안을 하였다. 그에 관한 장단점을 분석하고, 실현 가능성 여부를 경제성 평가 분석을 통해 검토하였다. 경제성 평가 방법을 위한 목적함수는 요구운임지수를 사용하였다. TEU 증가에 의한 경제성을 전망하고, 이러한 공간 재배치에 따른 조선소와 선주의 경제성 평가를 분석하여 선적 개수의 증가에 따른 경제성 전망을 제시하였다.

쌍축 컨테이너선의 조종성능 특성 연구 (Study on the Maneuvering Characteristics of a Container Ship with Twin Skegs)

  • 김연규;김선영;김형태;유병석;이석원
    • 대한조선학회논문집
    • /
    • 제43권1호
    • /
    • pp.15-21
    • /
    • 2006
  • Recently, the attention to large container ships whose size is greater than 10,000 TEU container ship has been increased due to their increasing demand. The large container ship has twin skegs because of the engine capacity and large beam-draft ratio. In this paper, the maneuvering characteristics of a container ship with twin skegs were investigated through 4DOF(four degree of freedom) HPMM(Horizontal Planar Motion Mechanism) test and computer simulation. A mathematical model for maneuvering motion with 4DOF of twin skegs system was established to include effects of roll motion on the maneuvering motion. And to obtain roll-coupling hydrodynamic coefficients of a container ship, 4DOF HPMM system of MOERI which has a roll moment measurement system was used. HPMM tests were carried out for a 12,000 TEU class container ship with twin skegs at scantling load condition. Using the hydrodynamic coefficients obtained, simulations were made to predict the maneuvering motion. Rudder forces of twin-rudders were measured at the angles of drift and rudder. The neutral rudder angles with drift angles of ship was quite different with those of single skeg ship. So other treatment of flow straightening coefficient $\gamma_R$ was used and the simulation results was compared with general simulation result. The treatment of experimental result at static drift and rudder test was very important to predict the maneuverability of a container ship with twin skegs.

초대형 컨테이너선의 경하중량 추정을 위한 통계적 방법 연구 (A Study on Statistical Methods for the Light Weight Estimation of Ultra Large Container Ships)

  • 조용진
    • 한국해양공학회지
    • /
    • 제23권3호
    • /
    • pp.14-19
    • /
    • 2009
  • The present study developed a model to estimate the light weight of an ultra-large container ship. The weight estimation model utilized container ship data obtained from shipyards and the subdivided this weight data into appropriate weight groups. Parameters potentially affecting the group weight were selected and expanded based on experience for weight estimation, and a correlation analysis was performed by the SPSS program to determine the key parameters characterizing the group weight. A weight estimation model applying the multi-regression analysis was proposed to assess the weight of an ultra-large container ship at the preliminary design stage, and the results obtained by the suggested method showed good agreement with the shipyard data.

초대형 컨테이너선 기항에 대응하는 항만생산성 예측 (Forecasting of Port Productivity to Response Very Large Container Ship)

  • 최용석;하태영
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2005년도 추계학술대회 논문집
    • /
    • pp.319-325
    • /
    • 2005
  • 본 연구의 목적은 초대형 컨테이너선 기항에 따른 컨테이너터미널의 항만생산성을 예측하는 것이다. 일반적으로 컨테이너터미널의 생산성은 컨테이너크레인, 야드크레인, 야드트랙터 등을 포함한 하역시스템의 생산성에 의해 평가된다. 그러므로 부산항 컨테이너터미널의 항만 생산성으로서 컨테이너크레인의 현재 생산성을 분석하고 초대형 컨테이너선에 의한 컨테이너를 처리하기 위한 순작업 생산성과 총작업 생산성을 예측한다. 생산성 향상을 위해 하역시스템 대안과 운영시스템 대안을 요약한다.

  • PDF

Fatigue Assessment of Very Large Container Ships Considering Springing Effect Based on Stochastic Approach

  • Jung, Byoung-Hoon;Ahn, In-Gyu;Seo, Sun-Kee;Kim, Beom-Il
    • 한국해양공학회지
    • /
    • 제34권2호
    • /
    • pp.120-127
    • /
    • 2020
  • Evaluation of fatigue strength considering the springing effect of very large container ships is crucial in the design stage. In this study, we established a fatigue strength evaluation method considering a linear springing component in the frequency domain. Based on a three-dimensional global model, a fluid-structure interaction analysis was performed and the modal superposition method was applied to determine the hot spot stress at the hatch corner of very large container ships. Fatigue damage was directly estimated using the stress transfer function with a linear springing response. Furthermore, we proposed a new methodology to apply the springing effect to fatigue damage using hull girder loads. Subsequently, we estimated the fatigue damage contribution due to linear springing components along the ship length. Finally, we discussed the practical application of the proposed methods.

Impact of the Thruster Jet Flow of Ultra-large Container Ships on the Stability of Quay Walls

  • Hwang, Taegeon;Yeom, Gyeong-Seon;Seo, Minjang;Lee, Changmin;Lee, Woo-Dong
    • 한국해양공학회지
    • /
    • 제35권6호
    • /
    • pp.403-413
    • /
    • 2021
  • As the size of ships increases, the size and output power of their thrusters also increase. When a large ship berths or unberths, the jet flow produced from its thruster has an adverse effect on the stability of quay walls. In this study, we conducted a numerical analysis to examine the impact of the thruster jet flow of a 30,000 TEU container ship, which is expected to be built in the near future, on the stability of a quay wall. In the numerical simulation, we used the fluid-structure interaction analysis technique of LS-DYNA, which is calculated by the overlapping capability using an arbitrary Lagrangian Eulerian formulation and Euler-Lagrange coupling algorithm with an explicit finite element method. As the ship approached the quay wall and the vertical position of the thruster approached the mound of the quay wall, the jet flow directly affected the foot-protection blocks and armor stones. The movement and separation of the foot-protection blocks and armor stones were confirmed in the area affected directly by the thruster jet flow of the container ship. Therefore, the thruster jet flows of ultra-large ships must be considered when planning and designing ports. In addition, the stability of existing port structures must be evaluated.

Hydroelastic response of 19,000 TEU class ultra large container ship with novel mobile deckhouse for maximizing cargo capacity

  • Im, Hong-Il;Vladimir, Nikola;Malenica, Sime;Cho, Dae-Seung
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제9권3호
    • /
    • pp.339-349
    • /
    • 2017
  • This paper is related to structural design evaluation of 19,000 TEU ultra large container ship, dealing with hydroelastic response, i.e. springing and whipping. It illustrates application of direct calculation tools and methodologies to both fatigue and ultimate strength assessment, simultaneously taking into account ship motions and her elastic deformations. Methodology for springing and whipping assessment within so called WhiSp notation is elaborated in details, and in order to evaluate innovative container ship design with increased loading capacity, a series of independent hydroelastic computations for container ship with mobile deckhouse and conventional one are performed with the same calculation setup. Fully coupled 3D FEM - 3D BEM model is applied, while the ultimate bending capacity of hull girder is determined by means of MARS software. Beside comparative analysis of representative quantities for considered ships, relative influence of hydroelasticity on ship response is addressed.

Model based Simulation of Container Loading/Unloading

  • Lee, Soon-Sup
    • International Journal of Ocean System Engineering
    • /
    • 제2권3호
    • /
    • pp.170-175
    • /
    • 2012
  • Currently, most logistics use containers. The construction of new port and high speed medium size container ship for the transportation of merchandise have become very important. The problem of ship stability is also important because of its direct influence on the loss of human life, ships, and merchandise. The stability of a container ship during its operation is not a large problem because it is well considered in the design process. However, the assessment of ship stability during container loading/unloading in port still depends on the expertise of experienced personnel. In this paper, a model based simulation system is introduced, which is able to assess ship stability during container loading/unloading, using ENVISION, a general purpose simulation system.

Numerical Analysis of Added Resistances of a Large Container Ship in WavesNumerical Analysis of Added Resistances of a Large Container Ship in Waves

  • Lee, Jae-Hoon;Kim, Beom-Soo;Kim, Yonghwan
    • Journal of Advanced Research in Ocean Engineering
    • /
    • 제3권2호
    • /
    • pp.83-101
    • /
    • 2017
  • In this study, the added resistances of the large container ship in head and oblique seas are evaluated using a time-domain Rankine panel method. The mean forces and moments are computed by the near-field method, namely, the integration of the second-order pressure directly on the ship surface. Furthermore, a weakly nonlinear approach in which the nonlinear restoring and Froude-Krylov forces on the exact wetted surface of a ship are included in order to examine the effects of amplitudes of waves on ship motions and added resistances. The computation results for various advance speeds and heading angles are validated by comparing with the experimental data, and the validation shows reasonable consistency. Nevertheless, there exist discrepancies between the numerical and experimental results, especially for a shorter wave length, a higher advance speed, and stern quartering seas. Therefore, the accuracies of the linear and weakly nonlinear methods in the evaluation of the mean drift forces and moments are also discussed considering the characteristics of the hull such as the small incline angle of the non-wall-sided stern and the fine geometry around the high-nose bulbous bow.