• Title/Summary/Keyword: Large change sensitivity

Search Result 104, Processing Time 0.033 seconds

Sensor placement selection of SHM using tolerance domain and second order eigenvalue sensitivity

  • He, L.;Zhang, C.W.;Ou, J.P.
    • Smart Structures and Systems
    • /
    • v.2 no.2
    • /
    • pp.189-208
    • /
    • 2006
  • Monitoring large-scale civil engineering structures such as offshore platforms and high-large buildings requires a large number of sensors of different types. Innovative sensor data information technologies are very extremely important for data transmission, storage and retrieval of large volume sensor data generated from large sensor networks. How to obtain the optimal sensor set and placement is more and more concerned by researchers in vibration-based SHM. In this paper, a method of determining the sensor location which aims to extract the dynamic parameter effectively is presented. The method selects the number and place of sensor being installed on or in structure by through the tolerance domain statistical inference algorithm combined with second order sensitivity technology. The method proposal first finds and determines the sub-set sensors from the theoretic measure point derived from analytical model by the statistical tolerance domain procedure under the principle of modal effective independence. The second step is to judge whether the sorted out measured point set has sensitive to the dynamic change of structure by utilizing second order characteristic value sensitivity analysis. A 76-high-building benchmark mode and an offshore platform structure sensor optimal selection are demonstrated and result shows that the method is available and feasible.

Analysis of mass and location of proportional damping system using the change of eigenvectors (고유벡터의 변화량에 의한 비례감쇠구조물의 변경질량 및 그 위치 해석)

  • Lee, Jung-Youn
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.2
    • /
    • pp.191-197
    • /
    • 2010
  • In spite of a large amount of previous research, detail study on modified mass in proportional damping system is not well understood. It is common to predict structural dynamic design parameters due to the change of mass, but to predict the amount of modified mass and the location where the mass is being modified are rarely found in previous literature. Such inverse problem required detail analytical study in order to understand structural modification in proportional damping system. This paper predicts the modified mass and the modified mass location in proportional damping system using sensitivity coefficients and iterative method. The sensitivity coefficients are obtained from the change of eigenvectors due to mass modification. This method is applied to a horizontal beam and three degree of freedoms system. To validate the predicted changing mass and its location, the obtained results are compared to the reanalysis result which shows good agreement.

An Experimental Study on the Effect of Sensor Line Number on the Reactivity Characteristic of Corrosion Sensor Reactive with Chloride Ion to Immigrate into Concrete (콘크리트내로 침투하는 염소이온 반응형 부식센서의 응답특성에 미치는 센서 세선 수의 영향에 관한 실험적 연구)

  • Lee, Hyun-Seok;Lee, Han-Seung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.3
    • /
    • pp.143-152
    • /
    • 2014
  • In this study, the sensor response and sensitivity is experimented and analyzed quantitatively by the line numbers of chlorine ion reaction type corrosion sensor that is developed. The sensor response of the developed corrosion sensor is verified with properties of chlorine ion. The multilineal sensor is shown a large resistance change more than the single line sensor by damage of the sensor. And, the resistance change of sensor is as large as high concentration of NaCl aqueous solution, the sensitivity of multilineal sensor is higher than single line sensor's, and the depth of sensor's location is as large as the increasing of resistance change time (cycle). These results suggest that, the developed corrosion sensor could sense corrosion reaction, sensor sensitivity and change of resistance for chloride ion. Especially, It was judged that 7 line sensor was the most superior for monitoring chloride ion immigration into concrete.

Study on sensitivity of modal parameters for suspension bridges

  • Liu, Chunhua;Wang, Ton-Lo;Qin, Quan
    • Structural Engineering and Mechanics
    • /
    • v.8 no.5
    • /
    • pp.453-464
    • /
    • 1999
  • Safety monitoring systems of structures generally resort to detecting possible changes of dynamic system parameters. Sensitivity analysis of these dynamic system parameters may implement these techniques. Conventional structural eigenvalue problems are discussed in the scope of those systems with deterministic parameters. Large and flexible structures, such as suspension bridges, actually possess stochastic material properties and these random properties unavoidably affect the dynamic system parameters. The sensitivity matrix of structural modal parameters to basic design variables has been established in this paper. Moreover, second order statistics of natural frequencies due to the randomness of material properties have been discussed. It is concluded from numerical analysis of a modem suspension bridge that although the second order statistics of frequencies are small relatively to the change of basic design variables, such as density of mass and modulus of elasticity, the sensitivities of modal parameters to these variables at different locations change in magnitude.

Prediction of Rolling Texture Evaolution in FCC Polycrystalline Metals Using Finite Element Method of Crystal Plasticity (결정소성 유한요소법을 이용한 FCC 다결정 금속의 압연 집합조직 예측)

  • 박성준;조재형;한흥남;오규환
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.08a
    • /
    • pp.313-319
    • /
    • 1999
  • The development of deformation texture in FCC polycystalline metals during rolling was simulated by the finite element analysis using a large-deformation, elaatic-plastic, rate-dependent polycrystalline model of crystal plasticity. Different plastic anisotropy due to different orientation of each crystal makes inhomogeneous deformation. Assuming plane strain compression condition, the simulation with a high rate sensitivity resulted in main component change from Dillamore at low rate sensitivity to Brass component.

  • PDF

A Faulty Synchronous Machine Model for Efficient Interface with Power System

  • Amangaldi Koochaki
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.812-819
    • /
    • 2015
  • This paper presents a new approach for simulating the internal faults of synchronous machines using distributed computing and Large Change Sensitivity (LCS) analysis. LCS analysis caters for a parallel solution of 3-phase model of a faulted machine within the symmetrical component-based model of interconnected network. The proposed method considers dynamic behavior of the faulty machine and connected system and tries to accurately solve the synchronous machine’s internal fault conditions in the system. The proposed method is implemented in stand-alone FORTRAN-based phasor software and the results have been compared with available recordings from real networks and precisely simulated faults by use of the ATP/EMTP as a time domain software package. An encouraging correlation between the simulation results using proposed method, ATP simulation and measurements was observed and reported. The simplified approach also enables engineers to quickly investigate their particular cases with a reasonable precision.

Contingency Selection Using Eigen-Sensitivity Analysis for Voltage Stability. (고유치감도 해석에 의한 전압안정도의 상정사고 선택)

  • Song, S.G.;Nam, H.K.;Shim, K.S.;Moon, Y.H.;Choi, H.K.;NamKung, J.Y.
    • Proceedings of the KIEE Conference
    • /
    • 2000.07a
    • /
    • pp.66-68
    • /
    • 2000
  • The Eigen analysis in large power system provides much useful information that is not got in nose curve. The branch participation factor is not quantitative information and is an indirect method calculating incremental change in branch reactive loss. But the Eigen sensitivity analysis to each mode is direct and provides of quantitative information but this method because of needing much time is used in large power system. In this paper the Hessenberg method is used to obtaining dominant eignvalues and corresponding eigenvectors of Jacobian matrix. Ranking the critical contingencies is done by computing the Eigen sensitivity of each dominant eignvalues for changes of each line. The proposed algorithm is tested on the New England 30-bus system and KEPCO system in the year of 2000, which comprises of 791-bus and 2500-branches.

  • PDF

Design of Room Lighting Switch Operated by Indirect Touch and Research on the Switching Sensitivity of Dielectric Materials On Electrode Metal (간접접촉형 실내조명 스위치의 설계 및 접촉부 절연물질별 스위칭 동작감도 고찰)

  • Choi, Joon-Young;Kang, Byung-Chul;Lee, Chang-Ik
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.4
    • /
    • pp.86-91
    • /
    • 2009
  • Indirect Touch switch which detects the change of capacitance around the electrode of QT113H chip from QPROX is designed and assembled. Sensitivity analysis of dielectric materials which prevents electrodes from direct touch is performed and the results are displayed in tables and graphs. Glass, acryl, and MDF is used to insulate the electrode and to measure the operating sensitivity of indirect touch switch. While the difference of permittivity of the dielectric materials are large, it is confirmed that the operating sensitivity of each dielectric materials are not so large as the differences of those of dielectric materials.

Climate Change Vulnerability Assessment of Cool-Season Grasslands Based on the Analytic Hierarchy Process Method

  • Lee, Bae Hun;Cheon, Dong Won;Park, Hyung Soo;Choi, Ki Choon;Shin, Jeong Seop;Oh, Mi Rae;Jung, Jeong Sung
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.41 no.3
    • /
    • pp.189-197
    • /
    • 2021
  • Climate change effects are particularly apparent in many cool-season grasslands in South Korea. Moreover, the probability of climate extremes has intensified and is expected to increase further. In this study, we performed climate change vulnerability assessments in cool-season grasslands based on the analytic hierarchy process method to contribute toward effective decision-making to help reduce grassland damage caused by climate change and extreme weather conditions. In the analytic hierarchy process analysis, vulnerability was found to be influenced in the order of climate exposure (0.575), adaptive capacity (0.283), and sensitivity (0.141). The climate exposure rating value was low in Jeju-do Province and high in Daegu (0.36-0.39) and Incheon (0.33-0.5). The adaptive capacity index showed that grassland compatibility (0.616) is more important than other indicators. The adaptation index of Jeollanam-do Province was higher than that of other regions and relatively low in Gangwon-do Province. In terms of sensitivity, grassland area and unused grassland area were found to affect sensitivity the most with index values of 0.487 and 0.513, respectively. The grassland area rating value was low in Jeju-do and Gangwon-do Province, which had large grassland areas. In terms of vulnerability, that of Jeju-do Province was lower and of Gyeongsangbuk-do Province higher than of other regions. These results suggest that integrating the three aspects of vulnerability (climate exposure, sensitivity, and adaptive capacity) may offer comprehensive and spatially explicit adaptation plans to reduce the impacts of climate change on the cool-season grasslands of South Korea.

Spatial Luminance Contrast Sensitivity: Effects of Surround

  • Kim, Youn-Jin;Kim, Hong-Suk
    • Journal of the Optical Society of Korea
    • /
    • v.14 no.2
    • /
    • pp.152-162
    • /
    • 2010
  • This study examined the effects of surround luminance on the shape of the spatial luminance contrast sensitivity function (CSF). The reduction in brightness of uniform neutral patches shown on a computer controlled display screen is also assessed to explain the change of CSF shape. Consequently, a large amount of reduction in contrast sensitivity at middle spatial frequencies can be observed; however, the reduction is relatively small for low spatial frequencies. In general, the effect of surround luminance on the CSF appears similar to that of mean luminance. Reduced CSF responses result in less power of the filtered image; therefore, the stimulus should appear dimmer with a higher surround luminance.