• 제목/요약/키워드: Large area mold

검색결과 68건 처리시간 0.026초

변형 DEEP X-ray 공정과 Hot Embossing 공정을 이용한 마이크로 렌즈 및 어레이의 제작 (Microlens and Arrays Fabrication by the Modified LIGA and Hot Embossing Process)

  • 이정아;이현섭;이성근;이승섭;권태헌
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.228-232
    • /
    • 2003
  • Mircolens and microlens arrays are realized using a novel fabrication technology based on the exposure of a resist, usually PMMA, to deep X-rays and subsequent thermal treatment. Hot embossing process is also studied for mass production. The fabrication technology is very simple and produces microlenses and microlens arrays with good surface roughness of several nm. The molecular weight and glass transition temperature of PMMA is reduced when it is irradiated with deep X-rays. The microlenses were produced through the effects of volume change, surface tension. and reflow during thermal treatment of irradiated PMMA. A hot embossing machine is designed and manufactured with a servo motor transfer system. The hot embossing process follows the steps of heating mold to the desired temperature, embossing a mold insert on substrate. cooling mold to the de-embossing temperature. and de-embossing. Microlenses were produced with diameters ranging from 30 to 1500 ${\mu}{\textrm}{m}$. The surface X-ray mask is also fabricated to realize microlens arrays on PMMA sheet with a large area.

  • PDF

Direct simulations on 2D mold-filling processes of particle-filled fluids

  • Hwang, Wook-Ryol;Kim, Worl-Yong;Kang, Shin-Hyun;Kim, See-Jo
    • Korea-Australia Rheology Journal
    • /
    • 제21권3호
    • /
    • pp.193-200
    • /
    • 2009
  • We present a direct simulation technique for two-dimensional mold-filling simulations of fluids filled with a large number of circular disk-like rigid particles. It is a direct simulation in that the hydrodynamic interaction between particles and fluid is fully considered. We employ a pseudo-concentration method for the evolution of the flow front and the DLM (distributed Lagrangian multipliers)-like fictitious domain method for the implicit treatment of the hydrodynamic interaction. Both methods allow the use of a fixed regular discretization during the entire computation. The discontinuous Galerkin method has been used to solve the concentration evolution equation and the rigid-ring description has been introduced for freely suspended particles. A buffer zone, the gate region of a finite area subject to the uniform velocity profile, has been introduced to put discrete particles into the computational domain avoiding any artificial discontinuity. From example problems of 450 particles, we investigated the particle motion and effects of particles on the flow for both Newtonian and shear-thinning fluid media. We report the prolonged particle movement toward the wall in case of a shear-thinning fluid, which has been interpreted with the shear rate distribution.

연속파형 Nd:YAG 레이저를 이용한 플라스틱성형용 금형강의 표면경화 특성 (Characteristics of Surface Hardening of Dies Steel for Plastic Molding using Continuous Wave Md:YAG Laser)

  • 신호준;유영태;오용석
    • 한국정밀공학회지
    • /
    • 제26권1호
    • /
    • pp.71-81
    • /
    • 2009
  • Die steel for plastic molding were used as mold material of automobile parts and electronic component industry. The material of this paper has superior to mechanical properties, such as repair weldability, corrosion resistance and high temperature strength, required mold parts for semitransparent. Laser-induced surface hardening technology is widely adopted to improver fatigue life and wear resistance via localized hardening at the surface of mold parts. The objective of this research work is to investigate on the characteristics of surface hardening of the laser process parameters, such as beam travel speed, laser power and defocsued spot position, for the case of die steel for plastic molding. Lens for surface hardening of large area is plano-convex type with elliptical profile to maintain uniform laser irradiation. According to the experimental results, large size of hardened layer at the surface of die steel for plastic molding was achieved, and microstructure of this layer was lath martensite. Optimal surface status and mechanical property of hardened layer could be obtained at 1095Watt, $0.25{\sim}0.3m/min$, 0mm (focal length: 232mm) for laser power, beam travel speed, and focal position. Where, heat input was $0.793{\times}10^{3}J/cm^2$, and width of hardened layer was 27.58mm.

Fabrication of Flexible Surface-enhanced Raman-Active Nanostructured Substrates Using Soft-Lithography

  • 박지윤;장석진;여종석
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제43회 하계 정기 학술대회 초록집
    • /
    • pp.411-411
    • /
    • 2012
  • Over the recent years, surface enhanced Raman spectroscopy (SERS) has dramatically grown as a label-free detecting technique with the high level of selectivity and sensitivity. Conventional SERS-active nanostructured layers have been deposited or patterned on rigid substrates such as silicon wafers and glass slides. Such devices fabricated on a flexible platform may offer additional functionalities and potential applications. For example, flexible SERS-active substrates can be integrated into microfluidic diagnostic devices with round-shaped micro-channel, which has large surface area compared to the area of flat SERS-active substrates so that we may anticipate high sensitivity in a conformable device form. We demonstrate fabrication of flexible SERS-active nanostructured substrates based on soft-lithography for simple, low-cost processing. The SERS-active nanostructured substrates are fabricated using conventional Si fabrication process and inkjet printing methods. A Si mold is patterned by photolithography with an average height of 700 nm and an average pitch of 200 nm. Polydimethylsiloxane (PDMS), a mixture of Sylgard 184 elastomer and curing agnet (wt/wt = 10:1), is poured onto the mold that is coated with trichlorosilane for separating the PDMS easily from the mold. Then, the nano-pattern is transferred to the thin PDMS substrates. The soft lithographic methods enable the SERS-active nanostructured substrates to be repeatedly replicated. Silver layer is physically deposited on the PDMS. Then, gold nanoparticle (AuNP) inks are applied on the nanostructured PDMS using inkjet printer (Dimatix DMP 2831) to deposit AuNPs on the substrates. The characteristics of SERS-active substrates are measured; topology is provided by atomic force microscope (AFM, Park Systems XE-100) and Raman spectra are collected by Raman spectroscopy (Horiba LabRAM ARAMIS Spectrometer). We anticipate that the results may open up various possibilities of applying flexible platform to highly sensitive Raman detection.

  • PDF

첨단 헤드업 디스플레이 장치용 비구면 자유형상 금형의 초정밀 가공에 관한 연구 (A study on the ultra precision machining of free-form molds for advanced head-up display device)

  • 박영덕;장태석
    • 한국산학기술학회논문지
    • /
    • 제20권1호
    • /
    • pp.290-296
    • /
    • 2019
  • 차량용 HUD는 자동차 전면 유리창에 안전 운전과 편의 운전 관련 다양한 정보를 표시해 주는 장치로 중요한 역할을 수행한다. 본 논문에서는 증강현실 기술에 적용이 가능한 대면적 비구면 자유형상 미러를 가공하기 위해 초정밀 가공기를 이용하여 가공을 실시하였고 그 결과를 측정하였다. 초정밀 다이아몬드 절삭은 정밀도가 높을 뿐만 아니라 표면 거칠기와 잔류 응력을 낮게 할 수 있어서 우수한 표면 무결성을 갖는 고급 부품의 생산에 유리하다. 또한 비구면 자유 형상의 몰드를 사용함으로써 광학 전달 함수의 개선, 왜곡 경로의 감소 및 특수 이미지 필드 곡률의 실현과 같은 장점을 얻을 수 있다. 이와 같은 비구면 자유형상 금형을 가공하기 위한 방법으로는 초정밀가공기를 이용한 다이아몬드 절삭 방법을 사용하였으며, 제작된 비구면 자유형상 미러 금형의 평가는 비구면 형상 측정기를 이용하여 실시하였다. 이러한 방법에 의해 $1{\mu}m$ 이하의 형상 정밀도(PV)와 $0.02{\mu}m$ 이하의 표면 거칠기(Ra)를 갖는 비구면 자유형상 금형을 제작할 수 있었다.

Taguchi method-optimized roll nanoimprinted polarizer integration in high-brightness display

  • Lee, Dae-Young;Nam, Jung-Gun;Han, Kang-Soo;Yeo, Yun-Jong;Lee, Useung;Cho, Sang-Hwan;Ok, Jong G.
    • Advances in nano research
    • /
    • 제13권2호
    • /
    • pp.199-206
    • /
    • 2022
  • We present the high-brightness large-area 10.1" in-cell polarizer display panel integrated with a wire grid polarizer (WGP) and metal reflector, from the initial design to final system development in a commercially feasible level. We have modeled and developed the WGP architecture integrated with the metal reflector in a single in-cell layer, to achieve excellent polarization efficiency as well as brightness enhancement through the light recycling effect. After the optimization of key experimental parameters via Taguchi method, the roll nanoimprint lithography employing a flexible large-area tiled mold has been utilized to create the 90 nm-pitch polymer resist pattern with the 54.1 nm linewidth and 5.1 nm residual layer thickness. The 90 nm-pitch Al gratings with the 51.4 nm linewidth and 2150 Å height have been successfully fabricated after subsequent etch process, providing the in-cell WGPs with high optical performance in the entire visible light regime. Finally we have integrated the WGP in a commercial 10.1" display device and demonstrated its actual operation, exhibiting 1.24 times enhancement of brightness compared to a conventional film polarizer-based one, with the contrast ratio of 1,004:1. Polarization efficiency and transmittance of the developed WGPs in an in-cell polarizer panel achieve 99.995 % and 42.3 %, respectively.

사형 주조에서 바인더 젯 3D 프린터를 이용한 기계적 물성 향상을 위한 공정 연구 (A Study on the Process for Improving Mechanical Property of Sand Casting by Using the Binder Jetting Method)

  • 황정철;김태성
    • 대한안전경영과학회지
    • /
    • 제25권1호
    • /
    • pp.23-29
    • /
    • 2023
  • Among the Additive Manufacturing (AM) technologies, the Binder-Jetting printing technology is a method of spraying an adhesive on the surface of powder and laminate layer by layer. Recently, this technique has become a major issue in the production of large casting products such as ship-building, custom vehicles and so on. In this study, we performed research to make actual mold castings and increase mechanical property by using special sand and water-based binders. For use as a mold, it has a strength of more than 3MPa and permeability. Various experiments were carried out to obtain suitable them. The major process parameters were binder jetting volume, binder types, layer thickness and heat treatment condition. As a result of this study, the binder drop quantity was measured to be about 60 pico-liter, layer thickness was 100㎛ and the heat treatment condition was measured about 1,000℃ and compressive strength were measured to be more than 5MPa. The optimum condition of this experiment was established through actual casting of aluminum. The equipment used in this study was a Freeforms T400 model (SFS Co., Ltd.), and the printing area of 420 * 300 * 250mm and resolution of 600dpi can be realized.

Riser Control Technology for Rectangle Cast Iron Blocks Applying the Heat Control Method of the Heater

  • Chul-Kyu Jin
    • 한국산업융합학회 논문집
    • /
    • 제27권4_1호
    • /
    • pp.797-803
    • /
    • 2024
  • In this study, a device was used to conduct heat to the riser by combining a cylindrical heater with the riser to maintain the molten metal above a certain temperature while continuously compensating for the shrinkage phenomenon that occurs as the molten metal solidifies in the product area. A cylindrical heater is coupled to the riser portion of the upper part of the upper mold, and a heater portion mold is formed between the riser and the cylindrical heater. The cylindrical heater is connected to a controller to control the temperature and a power supply. The cylindrical heater conducts a heat source to the molten metal located on the riser and can continuously compensate for the shrinkage of the cast product by heating the molten metal located on the riser or maintaining it at a constant temperature. The block without a riser had a large shrinkage cavity at the top, and the top became concave due to shrinkage. There is no shrinkage in the block with the Ø100 mm riser. Blocks that did not apply heaters to the Ø50 mm riser experienced shrinkage around the riser and also at the bottom. There is no shrinkage in the block with the Ø50 mm riser to which the heater was applied.

마이크로나노그레이팅 경질 몰드 모서리의 연속적 각인 소성가공 기반 유연 마이크로나노패턴의 고속 연속 제작 공정시스템 개발 (Development of a High-throughput Micronanopatterning System Based on the Plastic Deformation Driven by Continuous Rigid Mold Edge Inscribing on Flexible Substrates)

  • 이승조;오동교;박재규;김정대;이재혁;옥종걸
    • 한국생산제조학회지
    • /
    • 제25권5호
    • /
    • pp.368-372
    • /
    • 2016
  • In this study, we develop a novel high-throughput micronanopatterning system that can implement continuous mechanical pattern inscribing on flexible substrates using a rigid grating mold edge. We perform a conceptual design of the process principle, specific modeling, and buildup of a real system prototype. This research also carefully addresses several important issues related to processing and controlling, including precision motion, alignment, heating, and sensing to enable a successful micronanopatterning in a continuous and high-speed fashion. Various micronanopatterns with the desired profiles can be created by tuning the mold shape, temperature, force, and substrate material toward many potential applications involving electronics, photonics, displays, light sources, and sensors, which typically require a large-area and flexible configurations.