• Title/Summary/Keyword: Large Tree

Search Result 935, Processing Time 0.034 seconds

A Study on the Transplantation Methods of Large Trees - The Case of Celtis Sinensis in Chonan and Ginkgo biloba in Andong - (대형 수목의 이식공법 - 천안시 팽나무와 안동시 은행나무 사례 -)

  • 임재홍;이재근;김학범
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.30 no.4
    • /
    • pp.92-104
    • /
    • 2002
  • This study investigates, analyzes, and summarizes Dansplantation techniques and methods through practical methodology centering on fieldwork in order to present effective planting methods for large trees that have important significance. The conclusions are as follows : 1. The transplantation process of a large tree generally consists of the stages of digging up a tree, manufacturing a carrier frame, loading the tee on a vehicle, transporting, transplanting the tree, installing a strut and maintaining and managing the new transplant. In addition, planting a tree on a mounted place includes the primary procedures of trimming out the root, and preparing for transplanting the tree on a mounted place, as well as the secondary work of trimming out the root, transplanting a tree on a mounted place, maintenance and management. 2. In order to decide on a transplantation method for a large-sized tree, a structure calculation has to be performed first. That is, one must calculate the weight of the tree and the allowable stress of the strut (H-beam, etc.) fhst and then decide on the upper method through computer modeling based upon this structural calculation. 3. As a result of the analysis of a transplanted tree using the life soil method, it was confirmed that large quantities of feeder roots had developed around the root within a short time after the transplantation. The life soil method has proven to be very effective for transplantation of large-sized trees. 4. As for the production method of an H-beam strut frame, it was found that the manufacturing process and disassembly process were simple and proper; therefore, the H-beam frame is an appropriate structure to be used in the transplantation of large trees. 5. The concavo-convex method, which consists of filling the life soil in the concavo-convex area around the root, was found to be a method that promotes the growth of feeder roots within a short period of time and saves the supply of water at the same time.

Comparison Architecture for Large Number of Genomic Sequences

  • Choi, Hae-won;Ryoo, Myung-Chun;Park, Joon-Ho
    • Journal of Information Technology and Architecture
    • /
    • v.9 no.1
    • /
    • pp.11-19
    • /
    • 2012
  • Generally, a suffix tree is an efficient data structure since it reveals the detailed internal structures of given sequences within linear time. However, it is difficult to implement a suffix tree for a large number of sequences because of memory size constraints. Therefore, in order to compare multi-mega base genomic sequence sets using suffix trees, there is a need to re-construct the suffix tree algorithms. We introduce a new method for constructing a suffix tree on secondary storage of a large number of sequences. Our algorithm divides three files, in a designated sequence, into parts, storing references to the locations of edges in hash tables. To execute experiments, we used 1,300,000 sequences around 300Mbyte in EST to generate a suffix tree on disk.

Optimization for Large-Scale n-ary Family Tree Visualization

  • Kyoungju, Min;Jeongyun, Cho;Manho, Jung;Hyangbae, Lee
    • Journal of information and communication convergence engineering
    • /
    • v.21 no.1
    • /
    • pp.54-61
    • /
    • 2023
  • The family tree is one of the key elements of humanities classics research and is very important for accurately understanding people or families. In this paper, we introduce a method for automatically generating a family tree using information on interpersonal relationships (IIPR) from the Korean Classics Database (KCDB) and visualize interpersonal searches within a family tree using data-driven document JavaScript (d3.js). To date, researchers of humanities classics have wasted considerable time manually drawing family trees to understand people's influence relationships. An automatic family tree builder analyzes a database that visually expresses the desired family tree. Because a family tree contains a large amount of data, we analyze the performance and bottlenecks according to the amount of data for visualization and propose an optimal way to construct a family tree. To this end, we create an n-ary tree with fake data, visualize it, and analyze its performance using simulation results.

SQMR-tree: An Efficient Hybrid Index Structure for Large Spatial Data (SQMR-tree: 대용량 공간 데이타를 위한 효율적인 하이브리드 인덱스 구조)

  • Shin, In-Su;Kim, Joung-Joon;Kang, Hong-Koo;Han, Ki-Joon
    • Spatial Information Research
    • /
    • v.19 no.4
    • /
    • pp.45-54
    • /
    • 2011
  • In this paper, we propose a hybrid index structure, called the SQMR-tree(Spatial Quad MR-tree) that can process spatial data efficiently by combining advantages of the MR-tree and the SQR-tree. The MR-tree is an extended R-tree using a mapping tree to access directly to leaf nodes of the R-tree and the SQR-tree is a combination of the SQ-tree(Spatial Quad-tree) which is an extended Quad-tree to process spatial objects with non-zero area and the R-tree which actually stores spatial objects and are associated with each leaf node of the SQ-tree. The SQMR-tree consists of the SQR-tree as the base structure and the mapping trees associated with each R-tree of the SQR-tree. Therefore, because spatial objects are distributedly inserted into several R-trees and only R-trees intersected with the query area are accessed to process spatial queries like the SQR-tree, the query processing cost of the SQMR-tree can be reduced. Moreover, the search performance of the SQMR-tree is improved by using the mapping trees to access directly to leaf nodes of the R-tree without tree traversal like the MR-tree. Finally, we proved superiority of the SQMR-tree through experiments.

Note on classification and regression tree analysis (분류와 회귀나무분석에 관한 소고)

  • 임용빈;오만숙
    • Journal of Korean Society for Quality Management
    • /
    • v.30 no.1
    • /
    • pp.152-161
    • /
    • 2002
  • The analysis of large data sets with hundreds of thousands observations and thousands of independent variables is a formidable computational task. A less parametric method, capable of identifying important independent variables and their interactions, is a tree structured approach to regression and classification. It gives a graphical and often illuminating way of looking at data in classification and regression problems. In this paper, we have reviewed and summarized tile methodology used to construct a tree, multiple trees and the sequential strategy for identifying active compounds in large chemical databases.

VA-Tree : An Efficient Multi-Dimensional Index Structure for Large Data Set (VA-Tree : 대용량 데이터를 위한 효율적인 다차원 색인구조)

  • 송석일;이석희;조기형;유재수
    • Journal of Korea Multimedia Society
    • /
    • v.6 no.5
    • /
    • pp.753-768
    • /
    • 2003
  • In this paper, we propose a multi-dimensional index structure, tailed a VA(Vector Approximate)-tree that is constructed with vector approximates of multi-dimensional feature vectors. To save storage space for index structures, the VA-tree employs vector approximation concepts of VA-file that presents feature vectors with much smaller number of bits than original value. Since the VA-tree is a tree structure, it does not suffer from performance degradation owing to the increase of data. Also, even though the VA-tree is MBR(Minimum Bounding Region) based tree structure like a R-tree, its split algorithm never allows overlap between MBRs. We show through various experiments that our proposed VA-tree is a suitable index structure for large amount of multi-dimensional data.

  • PDF

Incremental Generation of A Decision Tree Using Global Discretization For Large Data (대용량 데이터를 위한 전역적 범주화를 이용한 결정 트리의 순차적 생성)

  • Han, Kyong-Sik;Lee, Soo-Won
    • The KIPS Transactions:PartB
    • /
    • v.12B no.4 s.100
    • /
    • pp.487-498
    • /
    • 2005
  • Recently, It has focused on decision tree algorithm that can handle large dataset. However, because most of these algorithms for large datasets process data in a batch mode, if new data is added, they have to rebuild the tree from scratch. h more efficient approach to reducing the cost problem of rebuilding is an approach that builds a tree incrementally. Representative algorithms for incremental tree construction methods are BOAT and ITI and most of these algorithms use a local discretization method to handle the numeric data type. However, because a discretization requires sorted numeric data in situation of processing large data sets, a global discretization method that sorts all data only once is more suitable than a local discretization method that sorts in every node. This paper proposes an incremental tree construction method that efficiently rebuilds a tree using a global discretization method to handle the numeric data type. When new data is added, new categories influenced by the data should be recreated, and then the tree structure should be changed in accordance with category changes. This paper proposes a method that extracts sample points and performs discretiration from these sample points to recreate categories efficiently and uses confidence intervals and a tree restructuring method to adjust tree structure to category changes. In this study, an experiment using people database was made to compare the proposed method with the existing one that uses a local discretization.

A KD-Tree-Based Nearest Neighbor Search for Large Quantities of Data

  • Yen, Shwu-Huey;Hsieh, Ya-Ju
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.3
    • /
    • pp.459-470
    • /
    • 2013
  • The discovery of nearest neighbors, without training in advance, has many applications, such as the formation of mosaic images, image matching, image retrieval and image stitching. When the quantity of data is huge and the number of dimensions is high, the efficient identification of a nearest neighbor (NN) is very important. This study proposes a variation of the KD-tree - the arbitrary KD-tree (KDA) - which is constructed without the need to evaluate variances. Multiple KDAs can be constructed efficiently and possess independent tree structures, when the amount of data is large. Upon testing, using extended synthetic databases and real-world SIFT data, this study concludes that the KDA method increases computational efficiency and produces satisfactory accuracy, when solving NN problems.

Parallel Range Query Processing with R-tree on Multi-GPUs (다중 GPU를 이용한 R-tree의 병렬 범위 질의 처리 기법)

  • Ryu, Hongsu;Kim, Mincheol;Choi, Wonik
    • Journal of KIISE
    • /
    • v.42 no.4
    • /
    • pp.522-529
    • /
    • 2015
  • Ever since the R-tree was proposed to index multi-dimensional data, many efforts have been made to improve its query performances. One common trend to improve query performance is to parallelize query processing with the use of multi-core architectures. To this end, a GPU-base R-tree has been recently proposed. However, even though a GPU-based R-tree can exhibit an improvement in query performance, it is limited in its ability to handle large volumes of data because GPUs have limited physical memory. To address this problem, we propose MGR-tree (Multi-GPU R-tree), which can manage large volumes of data by dividing nodes into multiple GPUs. Our experiments show that MGR-tree is up to 9.1 times faster than a sequential search on a GPU and up to 1.6 times faster than a conventional GPU-based R-tree.

Fast Hilbert R-tree Bulk-loading Scheme using GPGPU (GPGPU를 이용한 Hilbert R-tree 벌크로딩 고속화 기법)

  • Yang, Sidong;Choi, Wonik
    • Journal of KIISE
    • /
    • v.41 no.10
    • /
    • pp.792-798
    • /
    • 2014
  • In spatial databases, R-tree is one of the most widely used indexing structures and many variants have been proposed for its performance improvement. Among these variants, Hilbert R-tree is a representative method using Hilbert curve to process large amounts of data without high cost split techniques to construct the R-tree. This Hilbert R-tree, however, is hardly applicable to large-scale applications in practice mainly due to high pre-processing costs and slow bulk-load time. To overcome the limitations of Hilbert R-tree, we propose a novel approach for parallelizing Hilbert mapping and thus accelerating bulk-loading of Hilbert R-tree on GPU memory. Hilbert R-tree based on GPU improves bulk-loading performance by applying the inversed-cell method and exploiting parallelism for packing the R-tree structure. Our experimental results show that the proposed scheme is up to 45 times faster compared to the traditional CPU-based bulk-loading schemes.