• 제목/요약/키워드: Large Structure

검색결과 7,353건 처리시간 0.032초

COSMIC RAYS ACCELERATED AT SHOCK WAVES IN LARGE SCALE STRUCTURE

  • RYU DONGSU;KANG HYESUNG
    • 천문학회지
    • /
    • 제37권5호
    • /
    • pp.477-482
    • /
    • 2004
  • Shock waves form in the intergalactic space as an ubiquitous consequence of cosmic structure formation. Using N-body/hydrodynamic simulation data of a ACDM universe, we examined the properties of cosmological shock waves including their morphological distribution. Adopting a diffusive shock acceleration model, we then calculated the amount of cosmic ray energy as well as that of gas thermal energy dissipated at the shocks. Finally, the dynamical consequence of those cosmic rays on cluster properties is discussed.

유연지반상 대형내진시험구조물의 지진응답해석 (Seismic Response Analysis of a Large Scale Soil-Structure Interaction Test Structure on Flexible Site)

  • 조양희
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 1997년도 춘계 학술발표회 논문집 Proceedings of EESK Conference-Fall 1997
    • /
    • pp.257-264
    • /
    • 1997
  • Seismic responses of the Hualien large scale seismic test model on a layered soil site are estimated for two recorded earthquakes and the analysis results are then compared and evaluated with the recorded responses. The method adopted for the analysis is based on substructuring method using a lumped parameter model in both the frequency and time domain. the study results indicate that the proposed method can reasonably estimate the earthquake responses of a soil-structure interaction system for engineering purposes.

  • PDF

K-IFRS 도입 전후 기업의 소유구조가 자본구조에 미치는 영향: 상장 대기업과 중소기업의 비교 (The Effects of Ownership Structure on Capital Structure: Comparison of Listed Large Firms and SMEs in Korea)

  • 문희숙;김문겸
    • 중소기업연구
    • /
    • 제42권3호
    • /
    • pp.195-220
    • /
    • 2020
  • 본 연구는 2002년부터 2019년까지 유가증권시장(KOSPI)과 코스닥시장(KOSDAQ)에 상장된 대기업 7,074개, 중소기업 2,394개를 대상으로 2011년을 기점으로 의무 도입된 한국채택국제회계기준(K-IFRS) 전후의 대주주지분율과 외국인 주주지분율이 레버리지비율에 미치는 영향을 실증분석 하였으며 분석결과는 다음과 같다. K-IFRS의 도입은 중소기업보다 대기업의 자본구조에 더 영향을 미친다고 할 수 있다. 유가증권시장과 코스닥시장에 상장된 대기업과 중소기업의 대주주지분율과 외국인주주 지분율은 레버리지비율에 유의한 영향을 미치는 것으로 나타났다. 대기업 및 중소기업 대주주는 부채의 사용을 재무위험으로 인식하여 레버리지비율을 감소시키는 것으로 나타났다. 또한 외국인주주는 K-IFRS 도입 여부와 상관없이 투자 위험을 낮추기 위해 부채사용을 재무위험으로 인식하고 레버리지비율을 감소시키는 방향으로 영향을 준다는 것을 알 수 있다.

Optimization of multiple tuned mass dampers for large-span roof structures subjected to wind loads

  • Zhou, Xuanyi;Lin, Yongjian;Gu, Ming
    • Wind and Structures
    • /
    • 제20권3호
    • /
    • pp.363-388
    • /
    • 2015
  • For controlling the vibration of specific building structure with large span, a practical method for the design of MTMD was developed according to the characteristics of structures subjected to wind loads. Based on the model of analyzing wind-induced response of large-span structure with MTMD, the optimization method of multiple tuned mass dampers for large-span roof structures subjected to wind loads was established, in which the applicable requirements for strength and fatigue life of TMD spring were considered. According to the method, the controlled modes and placements of TMDs in MTMD were determined through the quantitative analysis on modal contribution to the wind-induced dynamic response of structure. To explore the characteristics of MTMD, the parametric analysis on the effects of mass ratio, damping ratio, central tuning frequency ratio and frequency range of MTMD, was performed in the study. Then the parameters of MTMD were optimized through genetic algorithm and the optimized MTMD showed good dynamic characteristics. The robustness of the optimized MTMD was also investigated.

Numerical analysis of an offshore platform with large partial porous cylindrical members due to wave forces

  • Park, Min-Su;Kawano, Kenji;Nagata, Shuichi
    • Ocean Systems Engineering
    • /
    • 제1권4호
    • /
    • pp.337-353
    • /
    • 2011
  • In the present study, an offshore platform having large partial porous cylindrical members, which are composed of permeable and impermeable cylinders, is suggested. In order to calculate the wave force on large partial porous cylindrical members, the fluid domain is divided into three regions: a single exterior region, N inner regions and N beneath regions, and the scattering wave in each fluid region is expressed by an Eigen-function expansion method. Applying Darcy's law to the porous boundary condition, the effect of porosity is simplified. Wave excitation forces and wave run up on the structures are presented for various wave conditions. For the idealized three-dimensional platform having large partial porous cylindrical members, the dynamic response evaluations of the platform due to wave forces are carried out through the modal analysis. In order to examine the effects of soil-structure interaction, the substructure method is also applied. The displacement and bending stress at the selective nodal points of the structure are computed using various input parameters, such as the shear-wave velocity of soil, the wave height and the wave period. Applying the Monte Carlo Simulation (MCS) method, the reliability evaluations at critical structure members, which contained uncertainties caused by dynamic forces and structural properties, are examined by the reliability index with the results obtained from MCS.

단백질의 동적특성해석을 위한 전산해석기법 연구 (Computational Methodology for Biodynamics of Proteins)

  • 안정희;장효선;엄길호;나성수
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2008년도 춘계학술대회논문집
    • /
    • pp.476-479
    • /
    • 2008
  • Understanding the dynamics of proteins is essential to gain insight into biological functions of proteins. The protein dynamics is delineated by conformational fluctuation (i.e. thermal vibration), and thus, thermal vibration of proteins has to be understood. In this paper, a simple mechanical model was considered for understanding protein's dynamics. Specifically, a mechanical vibration model was developed for understanding the large protein dynamics related to biological functions. The mechanical model for large proteins was constructed based on simple elastic model (i.e. Tirion's elastic model) and model reduction methods (dynamic model condensation). The large protein structure was described by minimal degrees of freedom on the basis of model reduction method that allows one to transform the refined structure into the coarse-grained structure. In this model, it is shown that a simple reduced model is able to reproduce the thermal fluctuation behavior of proteins qualitatively comparable to original molecular model. Moreover, the protein's dynamic behavior such as collective dynamics is well depicted by a simple reduced mechanical model. This sheds light on that the model reduction may provide the information about large protein dynamics, and consequently, the biological functions of large proteins.

  • PDF

Experimental investigation of the large amplitude vibrations of a thin-walled column under self-weight

  • Goncalves, Paulo B.;Jurjo, Daniel Leonardo B.R.;Magluta, Carlos;Roitman, Ney
    • Structural Engineering and Mechanics
    • /
    • 제46권6호
    • /
    • pp.869-886
    • /
    • 2013
  • This work presents an experimental methodology specially developed for the nonlinear large-amplitude free vibration analysis of a clamped-free thin-walled metal column under self-weight. The main contribution of this paper is related to the developed experimental methodology which is based on a remote sensing technique using a computer vision system that integrates, on-line, the digital image acquisition and its treatment through special image processing routines. The main importance of this methodology is that it performs large deflections measurements without making contact with the structure and thus, not introducing undesirable changes in its behavior, for instance, appreciable changes in mass and stiffness properties. This structure presents, in most cases, highly non-linear responses, which cannot be reproduced by conventional finite-element softwares due, mainly, to the simultaneous influence of geometric and inertial non-linearities. To capture the non-linearities associated with large amplitude vibration and be able to describe the buckling process, the structure is discretized as a sequence of jointed coupled elastic pendulums. The obtained numerical results are favorably compared with the experimental ones, in the pre- and post-buckling regimes.

Sensor placement selection of SHM using tolerance domain and second order eigenvalue sensitivity

  • He, L.;Zhang, C.W.;Ou, J.P.
    • Smart Structures and Systems
    • /
    • 제2권2호
    • /
    • pp.189-208
    • /
    • 2006
  • Monitoring large-scale civil engineering structures such as offshore platforms and high-large buildings requires a large number of sensors of different types. Innovative sensor data information technologies are very extremely important for data transmission, storage and retrieval of large volume sensor data generated from large sensor networks. How to obtain the optimal sensor set and placement is more and more concerned by researchers in vibration-based SHM. In this paper, a method of determining the sensor location which aims to extract the dynamic parameter effectively is presented. The method selects the number and place of sensor being installed on or in structure by through the tolerance domain statistical inference algorithm combined with second order sensitivity technology. The method proposal first finds and determines the sub-set sensors from the theoretic measure point derived from analytical model by the statistical tolerance domain procedure under the principle of modal effective independence. The second step is to judge whether the sorted out measured point set has sensitive to the dynamic change of structure by utilizing second order characteristic value sensitivity analysis. A 76-high-building benchmark mode and an offshore platform structure sensor optimal selection are demonstrated and result shows that the method is available and feasible.

Large Scale Structures at z~1 in SA22 Field and Environmental Dependence of Galaxy Properties

  • Hyun, Minhee;Im, Myungshin;Kim, Jae-Woo;Lee, Seong-Kook;Paek, Insu
    • 천문학회보
    • /
    • 제46권2호
    • /
    • pp.68.1-68.1
    • /
    • 2021
  • We study galaxy evolution with the large-scale environment with confirmed galaxy clusters from multi-object spectroscopy (MOS) observation. The observation was performed with Inamori Magellan Areal Camera and Spectrograph (IMACS) mounted on the 6.5 m Magellan/Baade telescope in Las Campanas Observatory. With the MOS observation, we spectroscopically confirm 34 galaxy clusters, including three galaxy clusters discovered in Kim et al. (2016) and 11 of them have halo mass of > 1014.5 M. Among the confirmed clusters, 12 galaxy clusters are part of large-scale structure at z ~ 0.9, and their size stretches to 40 Mpc co-moving scale. In this study, we checked the 'web feeding model,' which postulates that more linked (with their environment) galaxy clusters have less quenched populations by investigating the correlation between properties of confirmed galaxy clusters and the large-scale structure environment. Lastly, we found that galaxy clusters that make up the large-scale structure have larger and widely spread values of total star formation density (ΣSFR/Mhalo) than typical clusters at similar redshifts.

  • PDF

건축 구조물의 진동 제어용 하이브리드형 대용량 리니어 모터 댐퍼의 개발 (Development of a Large Capacity Hybrid-Type Linear Motor Damper for the vibration Control of Building Structures)

  • 정상섭;장석명;이성호;윤인기
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제51권11호
    • /
    • pp.601-611
    • /
    • 2002
  • As resent trends in structural construction have been to build taller and larger structures than any time in the past, they have had high flexibility and low damping that can cause large vibration response under severe environmental loading such as earthquakes, winds, and mechanical excitations. The damper with mass and sqring is one aproach to safeguarding the structure against excessive vibrations. In this paper, a large capacity hybrid-type linear motor damper(LMD) was designed and fabricated for the application to the vibration control of a large building structure model. It has been designed to be able to move the damper mass, 1,500 kg up to ${\pm}250mm$ strokes at the first mode natural frequency of the building structure model, ${\pm}0.51Hz$. Linear motor is consisted of the fixed coil and the movable NdFeB permanent magnets field part. The PM field part composed magnet modules and iron yoke, is the damper mass itself, 1500kg. LMD therefore has a simplified structure and requires a few elements in the driving system, being compared with a rotary motor damper and a hydraulic damper. However, the manufacture of large PM linear actuator is difficult because of the limit of PM size and the attraction and repulsion at the assembly of PM. Therefore, large damper system is manufactured and tested for dynamic characteristics and frequency response.