• Title/Summary/Keyword: Large Slope

Search Result 776, Processing Time 0.025 seconds

Trend Analysis of Documenting the Gardens of Old Houses with the Measurement Drawings of National Folklore Cultural Heritage (국가민속문화재의 실측도면을 통해 살펴본 고택 정원의 기록화 경향 분석)

  • LIM, Cheyeon;LEE, Jaeyong
    • Korean Journal of Heritage: History & Science
    • /
    • v.55 no.3
    • /
    • pp.46-58
    • /
    • 2022
  • This study analyzed the documentation trend of garden components such as plants, infrastructure, unit facilities, and structures, based on 188 measurement drawings of 94 old houses in a report on the documentation of the national folklore cultural heritage. The findings are as follows. First, it was found that plants and structures continuously appeared as the subject of measurement drawings, while infrastructure was often omitted. It was confirmed that unit facilities, which are smaller than other components, were frequently excluded from the documentation subject as well due to frequent changes such as movement, loss, and expansion. Second, the level of expression in measurement drawings showed different aspects for each component. The unit facilities showed a large change over time with respect to the level of documentation, and the level of documentation was somewhat polarized, particularly toward the latter stage. This suggests that the level of documenting the drawings limited to specific facilities improved, but the overall level of drawings did not improve, such as a lack of diversification of expression techniques suitable for various unit facilities. On the other hand, it was confirmed that the level of documenting the drawings for plants, infrastructure and structures did not change to a significant degree, implying that no improvements were made to the expression of components. Third, as for the technique of detailed expression, in the case of plants, vegetation status was prepared without distinction of old or protected trees that have historical value. Above all, there was no record of the vegetation structure that could help grasp the vegetation landscape of the outer area. As for the infrastructure, there was no consistent expression technique to systematically convey topographic changes such as the height and slope of the land. In addition, since there was no subtype classification defined for unit facilities and structures, there was no subject or method of documentation. This study is meaningful in that it expanded the category of documentation, which has been concentrated on buildings in old houses, to gardens, and called attention to the need for documenting the gardens for the preservation and management of old houses as an integration of the building and outer area.

A Study on the Direction of Planting Renewal in the Green Area of Seoul Children's Grand Park Reflecting Functional Changes (기능변화를 반영한 서울어린이대공원 조성녹지의 식재 리뉴얼 방향성 연구)

  • Park, Jeong-Ah;Han, Bong-Ho;Park, Seok-Cheol
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.51 no.3
    • /
    • pp.21-36
    • /
    • 2023
  • As a solution to environmental issues, such as climate change response, the carbon neutrality strategy, urban heat islands, fine dust, and biodiversity enhancement, the value of urban green spaces and trees are becoming important, and various studies dealing with the effects of trees for environmental improvement are being conducted. This study comprehensively considers the preceding studies on planting tree species, planting structure, planting density, and planting base to propose a direction for the planting renewal of green areas in urban parks and applies the findings to a renewal plan to improve the urban environment through landscaping trees. A field survey was conducted on the planting status of Seoul Children's Grand Park, a large-scale neighborhood park in Seoul, and based on the survey data, a planting function evaluation was conducted, and areas needing improvement in planting function were identified. The planting function evaluation was carried out considering the park function setting, planting concept according to spatial function, and planting status. As a result of the study, the direction of planting renewal according to functional change was derived for each stage of planting function evaluation. Increasing the green area ratio is a priority in setting up park functions, but user convenience should also be considered. As a concept of planting, visual landscape planting involves planting species with beautiful tree shapes, high carbon absorption, and fine dust reduction effects. Ecological landscape planting should create a multi-layered planting site on a slope. Buffer planting should be created as multi-layered forests to improve carbon absorption and fine dust reduction effects. Green planting should consist of broad-leaved trees and herbaceous layers and aim for the natural planting of herbaceous species. For plant species, species with high urban environment improvement effects, local native species, and wild bird preferred species should be selected. As for the planting structure, landscape planting sites and green planting sites should be composed of trees, shrubs, and trees and herbaceous layers that emphasize ecology or require multi-layered buffer functions. A higher standard is applied based on the planting interval for planting density. Installing a rainwater recycling facility and using soil loam for the planting base improves performance. The results of this study are meaningful in that they can be applied to derive areas needing functional improvement by performing planting function evaluation when planning planting renewal of aging urban parks and can suggest renewal directions that reflect the paradigm of functional change of created green areas.

Terrain Shadow Detection in Satellite Images of the Korean Peninsula Using a Hill-Shade Algorithm (음영기복 알고리즘을 활용한 한반도 촬영 위성영상에서의 지형그림자 탐지)

  • Hyeong-Gyu Kim;Joongbin Lim;Kyoung-Min Kim;Myoungsoo Won;Taejung Kim
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.5_1
    • /
    • pp.637-654
    • /
    • 2023
  • In recent years, the number of users has been increasing with the rapid development of earth observation satellites. In response, the Committee on Earth Observation Satellites (CEOS) has been striving to provide user-friendly satellite images by introducing the concept of Analysis Ready Data (ARD) and defining its requirements as CEOS ARD for Land (CARD4L). In ARD, a mask called an Unusable Data Mask (UDM), identifying unnecessary pixels for land analysis, should be provided with a satellite image. UDMs include clouds, cloud shadows, terrain shadows, etc. Terrain shadows are generated in mountainous terrain with large terrain relief, and these areas cause errors in analysis due to their low radiation intensity. previous research on terrain shadow detection focused on detecting terrain shadow pixels to correct terrain shadows. However, this should be replaced by the terrain correction method. Therefore, there is a need to expand the purpose of terrain shadow detection. In this study, to utilize CAS500-4 for forest and agriculture analysis, we extended the scope of the terrain shadow detection to shaded areas. This paper aims to analyze the potential for terrain shadow detection to make a terrain shadow mask for South and North Korea. To detect terrain shadows, we used a Hill-shade algorithm that utilizes the position of the sun and a surface's derivatives, such as slope and aspect. Using RapidEye images with a spatial resolution of 5 meters and Sentinel-2 images with a spatial resolution of 10 meters over the Korean Peninsula, the optimal threshold for shadow determination was confirmed by comparing them with the ground truth. The optimal threshold was used to perform terrain shadow detection, and the results were analyzed. As a qualitative result, it was confirmed that the shape was similar to the ground truth as a whole. In addition, it was confirmed that most of the F1 scores were between 0.8 and 0.94 for all images tested. Based on the results of this study, it was confirmed that automatic terrain shadow detection was well performed throughout the Korean Peninsula.

Abundance and Occupancy of Forest Mammals at Mijiang Area in the Lower Tumen River (두만강 하류 밀강 지역의 산림성 포유류 풍부도와 점유율)

  • Hai-Long Li;Chang-Yong Choi
    • Korean Journal of Environment and Ecology
    • /
    • v.37 no.6
    • /
    • pp.429-438
    • /
    • 2023
  • The forest in the lower Tumen River serves as an important ecosystem spanning the territories of North Korea, Russia, and China, and it provides habitat and movement corridors for diverse mammals, including the endangered Amur tiger (Panthera tigris) and Amur leopard (Panthera pardus). This study focuses on the Mijiang area, situated as a potential ecological corridor connecting North Korea and China in the lower Tumen River, playing a crucial role in conserving and restoring the biodiversity of the Korean Peninsula. This study aimed to identify mammal species and estimate their relative abundance, occupancy, and distribution based on the 48 camera traps installed in the Mijiang area from May 2019 to May 2021. The results confirmed the presence of 18 mammal species in the Mijiang area, including large carnivores like tigers and leopards. Among the dominant mammals, four species of ungulates showed high occupancy and detection rates, particularly the Roe deer (Capreolus pygargus) and Wild boar (Sus scrofa). The roe deer was distributed across all areas with a predicted high occupancy rate of 0.97, influenced by altitude, urban residential areas, and patch density. Wild boars showed a predicted occupancy rate of 0.73 and were distributed throughout the entire area, with factors such as wetland ratio, grazing intensity, and spatial heterogeneity in aspects of the landscape influencing their occupancy and detection rates. Sika deer (Cervus nippon) exhibited a predicted occupancy rate of 0.48, confined to specific areas, influenced by slope, habitat fragmentation diversity affecting detection rates, and the ratio of open forests impacting occupancy. Water deer (Hydropotes inermis) displayed a very low occupancy rate of 0.06 along the Tumen River Basin, with higher occupancy in lower altitude areas and increased detection in locations with high spatial heterogeneity in aspects. This study confirmed that the Mijiang area serves as a habitat supporting diverse mammals in the lower Tumen River while also playing a crucial role in facilitating animal movement and habitat connectivity. Additionally, the occupancy prediction model developed in this study is expected to contribute to predicting mammal distribution within the disrupted Tumen River basin due to human interference and identifying and protecting potential ecological corridors in this transboundary region.

A Study on the Funerary Mean of the Vertical Plate Armour from the 4th Century - Mainly Based on the Burial Patterns Shown by the Ancient Tombs No.164 and No.165 in Bokcheon-dong - (종장판갑(縱長板甲) 부장의 다양성과 의미 - 부산 복천동 164·165호분 출토 자료를 중심으로 -)

  • Lee, Yu Jin
    • Korean Journal of Heritage: History & Science
    • /
    • v.44 no.3
    • /
    • pp.178-199
    • /
    • 2011
  • The ancient tombs found in Bokcheon-dong, Busan originate from the time between the $4^{th}$ and $5^{th}$ centuries, the period of the Three Nations. They are known as the tombs where the Vertical Plate Armour was mainly buried. In 2006, two units of the Vertical Plate Armour were additionally investigated in the tombs No.164 and No.165 which had been constructed at the end of the eastern slope near the hill of the group of ancient tombs in Bokcheon-dong. Throughout this study, the contents of the two units of the Vertical Plate Armour, whose preservation process has been completed, have been arranged, while the group of constructed ancient tombs in Bokcheon-dong from the $4^{th}$ century has been observed through the consideration of the burial pattern. The units of the Vertical Plate Armour from the tombs No.164 and No.165 can be classified as the IIa-typed armor showing the Gyeongju and Ulsan patterns, according to the attribute of the manufacturing technology. Also, they can be chronologically recorded as those from the early period of Stage II among the three stages regarding the chronological recording of the Vertical Plate Armour. While more than two units of the Vertical Plate Armour were buried in the largesized tomb on the top of the hill of the group of ancient tombs, one unit of the Vertical Plate Armour was buried in the small-sized tomb. By considering such a trend, it can be said that in the stage of burying the armor showing the Gyeongju and Ulsan patterns (I-type and IIa-type), different units of the Vertical Plate Armour were buried according to the size of the tomb. However, as the armor showing the Busan pattern (IIb-type) was settled, only one unit was buried. Meanwhile, the tombs No.164 and No.165 can be included in the wooden chamber tomb showing the Gyeongju pattern, which is a slender rectangular wooden chamber tomb with the aspect ratio of more than 1:3. However, according to the trend shown by the buried earthenware, it can be said that there seem to be common types and patterns shared with the earthenware which has been found in the area of Gimhae and is called the one showing the Geumgwan Gaya pattern. In other words, there seem to be close relationships between the subject tombs and the tomb No.3 in Gujeong-dong and the tomb No.55 in Sara-ri, Gyeongju, regarding the types of armor and tombs and the arrangement of buried artifacts. However, the buried earthenware shows a relationship with the areas of Busan and Gimhae. By considering the combined trend of the Gyeongju and Gimhae elements found in one tomb, it is possible to assume that the group of constructed ancient tombs in Bokcheon-dong used to be actively related with both areas. It has been thought that the Vertical Plate Armour used to be the exclusive property of the upper hierarchy until now, since it was buried in the large-sized tomb located on the top of the hill of the group of ancient tombs in Bokcheondong. However, as shown in case of the tombs No.164 and No.165, it has been verified that the Vertical Plate Armour was also buried in the small-sized tomb in terms of such factors as locations, sizes, the amount of buried artifacts and the qualitative aspect. Therefore, it is impossible to discuss the hierarchical characteristic of the tomb just based on the buried units of the Vertical Plate Armour. Also, it is difficult to assume that armor used to symbolize the domination of the military forces. The hierarchical characteristic of the group of constructed ancient tombs in Bokcheon-dong from the $4^{th}$ century can be verified according to the location and size of each tomb. As are sult, the re seem to be some differences regarding the buried units of the vertical plate armour. However, it would be necessary to carry out amore multilateral examination in order to find out whether the burial of the vertical plate armour could be regarded as the artifact which symbolizes the status or class of the deceased.

Ecological Changes of Insect-damaged Pinus densiflora Stands in the Southern Temperate Forest Zone of Korea (I) (솔잎혹파리 피해적송림(被害赤松林)의 생태학적(生態学的) 연구(研究) (I))

  • Yim, Kyong Bin;Lee, Kyong Jae;Kim, Yong Shik
    • Journal of Korean Society of Forest Science
    • /
    • v.52 no.1
    • /
    • pp.58-71
    • /
    • 1981
  • Thecodiplosis japonesis is sweeping the Pinus densiflora forests from south-west to north-east direction, destroying almost all the aged large trees as well as even the young ones. The front line of infestation is moving slowly but ceaselessly norhwards as a long bottle front. Estimation is that more than 40 percent of the area of P. densiflora forest has been damaged already, however some individuals could escapes from the damage and contribute to restore the site to the previous vegetation composition. When the stands were attacked by this insect, the drastic openings of the upper story of tree canopy formed by exclusively P. densiflora are usually resulted and some environmental factors such as light, temperature, litter accumulation, soil moisture and offers were naturally modified. With these changes after insect invasion, as the time passes, phytosociologic changes of the vegetation are gradually proceeding. If we select the forest according to four categories concerning the history of the insect outbreak, namely, non-attacked (healthy forest), recently damaged (the outbreak occured about 1-2 years ago), severely damaged (occured 5-6 years ago), damage prolonged (occured 10 years ago) and restored (occured about 20 years ago), any directional changes of vegetation composition could be traced these in line with four progressive stages. To elucidate these changes, three survey districts; (1) "Gongju" where the damage was severe and it was outbroken in 1977, (2) "Buyeo" where damage prolonged and (3) "Gochang" as restored, were set, (See Tab. 1). All these were located in the south temperate forest zone which was delimited mainly due to the temporature factor and generally accepted without any opposition at present. In view of temperature, the amount and distribution of precipitation and various soil factor, the overall homogeneity of environmental conditions between survey districts might be accepted. However this did not mean that small changes of edaphic and topographic conditions and microclimates can induce any alteration of vegetation patterns. Again four survey plots were set in each district and inter plot distance was 3 to 4 km. And again four subplots were set within a survey plot. The size of a subplot was $10m{\times}10m$ for woody vegetation and $5m{\times}5m$ for ground cover vegetation which was less than 2 m high. The nested quadrat method was adopted. In sampling survey plots, the followings were taken into account: (1) Natural growth having more than 80 percent of crown density of upper canopy and more than 5 hectares of area. (2) Was not affected by both natural and artificial disturbances such as fire and thinning operation for the past three decades. (3) Lower than 500 m of altitude (4) Less than 20 degrees of slope, and (5) Northerly sited aspect. An intensive vegetation survey was undertaken during the summer of 1980. The vegetation was devided into 3 categories for sampling; the upper layer (dominated mainly by the pine trees), the middle layer composed by oak species and other broad-leaved trees as well as the pine, and the ground layer or the lower layer (shrubby form of woody plants). In this study our survey was concentrated on woody species only. For the vegetation analysis, calculated were values of intensity, frequency, covers, relative importance, species diversity, dominance and similarity and dissimilasity index when importance values were calculated, different relative weights as score were arbitrarily given to each layer, i.e., 3 points for the upper layer, 2 for the middle layer and 1 for the ground layer. Then the formula becomes as follows; $$R.I.V.=\frac{3(IV\;upper\;L.)+2(IV.\;middle\;L.)+1(IV.\;ground\;L.)}{6}$$ The values of Similarity Index were calculated on the basis of the Relative Importance Value of trees (sum of relative density, frequency and cover). The formula used is; $$S.I.=\frac{2C}{S_1+S_2}{\times}100=\frac{2C}{100+100}{\times}100=C(%)$$ Where: C = The sum of the lower of the two quantitative values for species shared by the two communities. $S_1$ = The sum of all values for the first community. $S_2$ = The sum of all values for the second community. In Tab. 3, the species composition of each plot by layer and by district is presented. Without exception, the species formed the upper layer of stands was Pinus densiflora. As seen from the table, the relative cover (%), density (number of tree per $500m^2$), the range of height and diameter at brest height and cone bearing tendency were given. For the middle layer, Quercus spp. (Q. aliena, serrata, mongolica, accutissina and variabilis) and Pinus densiflora were dominating ones. Genus Rhodedendron and Lespedeza were abundant in ground vegetation, but some oaks were involved also. (1) Gongju district The total of woody species appeared in this district was 26 and relative importance value of Pinus densiflora for the upper layer was 79.1%, but in the middle layer, the R.I.V. for Quercus acctissima, Pinus densiflora, and Quercus aliena, were 22.8%, 18.7% and 10.0%, respectively, and in ground vegetation Q. mongolica 17.0%, Q. serrata 16.8% Corylus heterophylla 11.8%, and Q. dentata 11.3% in order. (2) Buyeo district. The number of species enumerated in this district was 36 and the R.I.V. of Pinus densiflora for the uppper layer was 100%. In the middle layer, the R.I.V. of Q. variabilis and Q. serrata were 8.6% and 8.5% respectively. In the ground vegetative 24 species were counted which had no more than 5% of R.I.V. The mean R.I.V. of P.densiflora ( totaling three layers ) and averaging four plots was 57.7% in contrast to 46.9% for Gongju district. (3) Gochang-district The total number of woody species was 23 and the mean R.I.V. of Pinus densiflora was 66.0% showing greater value than those for two former districts. The next high value was 6.5% for Q. serrata. As the time passes since insect outbreak, the mean R.I.V. of P. densiflora increased as the following order, 46.9%, 57.7% and 66%. This implies that P. densiflora was getting back to its original dominat state again. The pooled importance of Genus Quercus was decreasing with the increase of that for Pinus densiflora. This trend was contradict to the facts which were surveyed at Kyonggi-do area (the central temperate forest zone) reported previously (Yim et al, 1980). Among Genus Quercus, Quercus acutissina, warm-loving species, was more abundant in the southern temperature zone to which the present research is concerned than the central temperate zone. But vice-versa was true with Q. mongolica, a cold-loving one. The species which are not common between the present survey and the previous report are Corpinus cordata, Beltala davurica, Wisturia floribunda, Weigela subsessilis, Gleditsia japonica var. koraiensis, Acer pseudosieboldianum, Euonymus japonica var. macrophylla, Ribes mandshuricum, Pyrus calleryana var. faruiei, Tilia amurensis and Pyrus pyrifolia. In Figure 4 and Table 5, Maximum species diversity (maximum H'), Species diversity (H') and Eveness (J') were presented. The Similarity indices between districts were shown in Tab. 5. Seeing Fig. 6, showing two-dimensional ordination of polts on the basis of X and Y coordinates, Ai plots aggregate at the left site, Bi plots at lower site, and Ci plots at upper-right site. The increasing and decreasing patterns as to Relative Density and Relative Importance Value by genus or species were given in Fig. 7. Some of the patterns presented here are not consistent with the previously reported ones (Yim, et al, 1980). The present authors would like to attribute this fact that two distinct types of the insect attack, one is the short war type occuring in the south temperate forest zone, which means that insect attack went for a few years only, the other one is a long-drawn was type observed at the temperate forest zone in which the insect damage went on continuously for several years. These different behaviours of infestation might have resulted the different ways of vegetational change. Analysing the similarity indices between districts, the very convincing results come out that the value of dissimilarity index between A and B was 30%, 27% between B and C and 35% between A and C (Table 6). The range of similarity index was obtained from the calculation of every possible combinations of plots between two districts. Longer time isolation between communities has brought the higher value of dissimilarity index. The main components of ground vegetation, 10 to 20 years after insect outbreak, become to be consisted of mainly Genus Lespedeza and Rhododendron. Genus Quercus which relate to the top dorminant state for a while after insect attack was giving its place to Pinus densiflora. It was implied that, provided that the soil fertility, soil moisture and soil depth were good enough, Genus Quercuss had never been so easily taken ever by the resistant speeies like Pinus densiflora which forms the edaphic climax at vast areas of forest land. Usually they refer Quercus to the representative component of the undisturbed natural forest in the central part of this country.

  • PDF