• 제목/요약/키워드: Large Scale Sensor Networks

검색결과 104건 처리시간 0.028초

Robust Hierarchical Data Fusion Scheme for Large-Scale Sensor Network

  • Song, Il Young
    • 센서학회지
    • /
    • 제26권1호
    • /
    • pp.1-6
    • /
    • 2017
  • The advanced driver assistant system (ADAS) requires the collection of a large amount of information including road conditions, environment, vehicle status, condition of the driver, and other useful data. In this regard, large-scale sensor networks can be an appropriate solution since they have been designed for this purpose. Recent advances in sensor network technology have enabled the management and monitoring of large-scale tasks such as the monitoring of road surface temperature on a highway. In this paper, we consider the estimation and fusion problems of the large-scale sensor networks used in the ADAS. Hierarchical fusion architecture is proposed for an arbitrary topology of the large-scale sensor network. A robust cluster estimator is proposed to achieve robustness of the network against outliers or failure of sensors. Lastly, a robust hierarchical data fusion scheme is proposed for the communication channel between the clusters and fusion center, considering the non-Gaussian channel noise, which is typical in communication systems.

A FRAMEWORK FOR QUERY PROCESSING OVER HETEROGENEOUS LARGE SCALE SENSOR NETWORKS

  • Lee, Chung-Ho;Kim, Min-Soo;Lee, Yong-Joon
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2007년도 Proceedings of ISRS 2007
    • /
    • pp.101-104
    • /
    • 2007
  • Efficient Query processing and optimization are critical for reducing network traffic and decreasing latency of query when accessing and manipulating sensor data of large-scale sensor networks. Currently it has been studied in sensor database projects. These works have mainly focused on in-network query processing for sensor networks and assumes homogeneous sensor networks, where each sensor network has same hardware and software configuration. In this paper, we present a framework for efficient query processing over heterogeneous sensor networks. Our proposed framework introduces query processing paradigm considering two heterogeneous characteristics of sensor networks: (1) data dissemination approach such as push, pull, and hybrid; (2) query processing capability of sensor networks if they may support in-network aggregation, spatial, periodic and conditional operators. Additionally, we propose multi-query optimization strategies supporting cross-translation between data acquisition query and data stream query to minimize total cost of multiple queries. It has been implemented in WSN middleware, COSMOS, developed by ETRI.

  • PDF

대규모 무선 센서 네트워크에서 종단 간 전송 성공률 향상을 위한 기회적 라우팅 기반 다중 경로 전송 방안 (Multipath Routing Based on Opportunistic Routing for Improving End-to-end Reliability in Large-scale Wireless Sensor Networks)

  • 김상대;김경훈;김기일
    • 대한임베디드공학회논문지
    • /
    • 제14권4호
    • /
    • pp.177-186
    • /
    • 2019
  • In wireless sensor networks, the transmission success ratio would be decreased when the scale of the WSNs increased. To defeat this problem, we propose a multipath routing based on opportunistic routing for improving end-to-end reliability in large-scale wireless sensor networks. The proposed scheme exploits the advantages of existing opportunistic routing and achieves high end-to-end success ratio by branching like a multipath routing through local decision without information of the whole network. As a result of the simulation result, the proposed scheme shows a similar or higher end-to-end transmission success ratio and less energy consumption rather than the existing scheme.

Memory-Efficient Hypercube Key Establishment Scheme for Micro-Sensor Networks

  • Lhee, Kyung-Suk
    • ETRI Journal
    • /
    • 제30권3호
    • /
    • pp.483-485
    • /
    • 2008
  • A micro-sensor network is comprised of a large number of small sensors with limited memory capacity. Current key-establishment schemes for symmetric encryption require too much memory for micro-sensor networks on a large scale. In this paper, we propose a memory-efficient hypercube key establishment scheme that only requires logarithmic memory overhead.

  • PDF

무선 센서 네트워크에서 에너지 효율성을 고려한 시간 동기 알고리즘 (EETS : Energy- Efficient Time Synchronization for Wireless Sensor Networks)

  • 김수중;홍성화;엄두섭
    • 전기전자학회논문지
    • /
    • 제11권4호
    • /
    • pp.322-330
    • /
    • 2007
  • Recent advances in wireless networks and low-cost, low-power design have led to active research in large-scale networks of small, wireless, low power sensors and actuators, In large-scale networks, lots of timing-synchronization protocols already exist (such as NTP, GPS), In ad-hoc networks, especially wireless sensor networks, it is hard to synchronize all nodes in networks because it has no infrastructure. In addition, sensor nodes have low-power CPU (it cannot perform the complex computation), low batteries, and even they have to have active and inactive section by periods. Therefore, new approach to time synchronization is needed for wireless sensor networks, In this paper, I propose Energy-Efficient Time Synchronization (EETS) protocol providing network-wide time synchronization in wireless sensor networks, The algorithm is organized two phase, In first phase, I make a hierarchical tree with sensor nodes by broadcasting "Level Discovery" packet. In second phase, I synchronize them by exchanging time stamp packets, And I also consider send time, access time and propagation time. I have shown the performance of EETS comparing Timing-sync Protocol for Sensor Networks (TPSN) and Reference Broadcast Synchronization (RBS) about energy efficiency and time synchronization accuracy using NESLsim.

  • PDF

TinyIBAK: Design and Prototype Implementation of An Identity-based Authenticated Key Agreement Scheme for Large Scale Sensor Networks

  • Yang, Lijun;Ding, Chao;Wu, Meng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제7권11호
    • /
    • pp.2769-2792
    • /
    • 2013
  • In this paper, we propose an authenticated key agreement scheme, TinyIBAK, based on the identity-based cryptography and bilinear paring, for large scale sensor networks. We prove the security of our proposal in the random oracle model. According to the formal security validation using AVISPA, the proposed scheme is strongly secure against the passive and active attacks, such as replay, man-in-the middle and node compromise attacks, etc. We implemented our proposal for TinyOS-2.1, analyzed the memory occupation, and evaluated the time and energy performance on the MICAz motes using the Avrora toolkits. Moreover, we deployed our proposal within the TOSSIM simulation framework, and investigated the effect of node density on the performance of our scheme. Experimental results indicate that our proposal consumes an acceptable amount of resources, and is feasible for infrequent key distribution and rekeying in large scale sensor networks. Compared with other ID-based key agreement approaches, TinyIBAK is much more efficient or comparable in performance but provides rekeying. Compared with the traditional key pre-distribution schemes, TinyIBAK achieves significant improvements in terms of security strength, key connectivity, scalability, communication and storage overhead, and enables efficient secure rekeying.

대규모 무선 센서 네트워크에서 트래픽을 고려한 혼잡제어 (A Congestion Control Scheme Considering Traffic in Large-Scale Wireless Sensor Networks)

  • 곽문상;홍영식
    • 정보과학회 논문지
    • /
    • 제42권1호
    • /
    • pp.114-121
    • /
    • 2015
  • 대규모 무선 센서 네트워크는 넓은 지역에 불균일하게 많은 수의 센서노드들이 분포하므로 높은 조밀한 밀집도로 인해 센서노드들이 수집한 데이터들이 서로 유사하거나 중복될 수 있다. 다수의 센서노드에서 싱크노드로 수렴하는 트래픽 특성으로 인해 센서노드들이 수집한 데이터를 싱크노드로 전송할 때 싱크노드 주변의 센서노드들은 싱크노드로부터 멀리 떨어져 있는 센서노드들에 비해 트래픽 양이 많아 혼잡이 발생하여 병목문제가 발생하고, 에너지 소모량도 증가하여 에너지 홀 문제가 발생한다. 본 논문에서는 대규모 무선 센서 네트워크에서 불균일하게 분포되어 있는 센서노드들의 혼잡을 제어하기 위한 트래픽을 고려한 혼잡제어기법를 제안하였다.

대규모 무선 센서 네트워크 환경을 위한 다중 Sink 브로드캐스팅 기법 설계 (A Design of a Selective Multi Sink GRAdient Broadcast Scheme in Large Scale Wireless Sensor Network)

  • 이호선;조익래;이균하
    • 한국컴퓨터정보학회논문지
    • /
    • 제10권4호
    • /
    • pp.239-248
    • /
    • 2005
  • 대규모 무선 센서 네트워크는 네트워크의 신뢰성과 에너지 효율을 동시에 고려해야 한다. 네트워크의 신뢰성을 높이기 위해서는 유니 캐스트 기반 데이터 전송 방법보다 브로드캐스트 기반 데이터 전송 방법을 사용해야 한다. 최근 발표된 GRAdient Broadcast (GRAB)는 브로드캐스트 기반 데이터 전송으로 네트워크의 신뢰성을 높일 수 있다. 하지만 한 개의 sink를 사용하기 때문에 네트워크 전체 에너지를 고르게 사용하지 못한다. 결국 네트워크의 동작 시간이 단축되는 단점이 있다. 이에 본 논문에서는 대규모 무선센서 네트워크에 적합한 Selective Multi Sink Gradient Broadcast (SMSGB)를 제안한다. SMSGB 는 여러 개의 sink를 사용하여 네트워크를 구성하고 한 개의 sink만 데이터를 수집한다. 특정한 이벤트가 발생이 되면 다른 sink가 데이터를 수집하게 된다. 이러한 방법을 통해 전체 네트워크의 에너지를 고르게 소모 할 수 있다. 또한 GRAB와 동일한 브로드캐스트 기반 데이터 전송으로 대규모 무선 센서 네트워크에서 신뢰성을 보장할 수 있다. 기존의 GRAB와 SMSGB를 비교한 모의실험을 통해 GRAB와 비슷한 신뢰성을 유지하면서 GRAB보다 SMSGB의 네트워크 동작 시간이 약 18% 이상 연장됨을 보인다.

  • PDF

A Survey on Key Management Strategies for Different Applications of Wireless Sensor Networks

  • Raazi, Syed Muhammad Khaliq-Ur-Rahman;Lee, Sung-Young
    • Journal of Computing Science and Engineering
    • /
    • 제4권1호
    • /
    • pp.23-51
    • /
    • 2010
  • Wireless Sensor Networks (WSN) have proved to be useful in applications that involve monitoring of real-time data. There is a wide variety of monitoring applications that can employ Wireless Sensor Network. Characteristics of a WSN, such as topology and scale, depend upon the application, for which it is employed. Security requirements in WSN vary according to the application dependent network characteristics and the characteristics of an application itself. Key management is the most important aspect of security as some other security modules depend on it. We discuss application dependent variations in WSN, corresponding changes in the security requirements of WSN and the applicability of existing key management solutions in each scenario.

A Large-scale Multi-track Mobile Data Collection Mechanism for Wireless Sensor Networks

  • Zheng, Guoqiang;Fu, Lei;Li, Jishun;Li, Ming
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제8권3호
    • /
    • pp.857-872
    • /
    • 2014
  • Recent researches reveal that great benefit can be achieved for data gathering in wireless sensor networks (WSNs) by employing mobile data collectors. In order to balance the energy consumption at sensor nodes and prolong the network lifetime, a multi-track large-scale mobile data collection mechanism (MTDCM) is proposed in this paper. MTDCM is composed of two phases: the Energy-balance Phase and the Data Collection Phase. In this mechanism, the energy-balance trajectories, the sleep-wakeup strategy and the data collection algorithm are determined. Theoretical analysis and performance simulations indicate that MTDCM is an energy efficient mechanism. It has prominent features on balancing the energy consumption and prolonging the network lifetime.