Transactions of the Korean Society of Mechanical Engineers B
/
v.25
no.8
/
pp.1060-1067
/
2001
A large-scale bursting event has been analyzed in a turbulent channel flow using a data obtained from a direct numerical simulation (DNS). Large-scale, plume-like structures have been frequently observed in many experimental results, but the origin of those structures is far from being fully understood. It is believed that those large scale events occur occasionally but contribute significantly to the generation of Reynolds shear stress in the outer layer. This paper attempts to give detailed examples of those large-scale motions observed in a turbulent channel flow at relatively low Reynolds number.
Purpose - The Korean government has revised the distribution industry development law to regulate large-scale retailer operations to protecting medium- and small-scale retailers and traditional markets. According to the revised law, large-scale retailers must follow regulations on operating hours and compulsory store closures two days per month. Based on the revised distribution industry development law, most local governments regulate operation hours and they have adopted compulsory closure programs for large-scale retail stores. However, it is argued that fresh food producers suffer from a decrease in sales based on the compulsory closure of stores operated by large-scale retailers. Large-scale retailers reduce their fresh food orders from agricultural and fishery producers because of the compulsory store closures. Fresh food producers also suffer from a decrease in prices because reduced orders lead to a decrease in auction prices based on the availability of excess goods in wholesale markets. This paper investigates the effects of operation regulations for large-scale retailers on agricultural producers by surveying agricultural and fishery producer organizations. Research design, data, methodology - A survey was conducted on 117 producer organizations of fruits and vegetables, cereals, fisheries, and livestock products from September 10 to October 4, 2012. Survey items are annual sales, shares of sales accounted for by large-scale retailers, reduction of orders and prices from large-scale retailers, methods to deal with the sales reduction, unfair trade practices of large-scale retailers, opinion of the large-scale retailer regulations, and so on. The average sales of the sampled producer organizations are 13.7 billion won and the average share of sales accounted for by large-scale retailers is 35.4%. Results - Survey results show that the sample producer organizations' sales decreased 10.1% because of the compulsory closures of stores operated by large-scale retailers. It is estimated that the total sales of producer organizations decreased 371.2 billion won because of the regulations on the operation of large-scale retailers. In addition to the direct effect of a sales decrease due to order reduction, agricultural and fishery producer organizations suffered from the secondary effect of price reduction in wholesale markets. When orders from large-scale retailers decreased, most agricultural and fishery producer organizations shipped redundant products to wholesale markets, decreasing auction prices. It was estimated that the price received decreased 21.9% when sold in other marketing channels. As producer organization sales decreased, it was reported that the labor force employed by producer organizations also decreased by 15.1%. Therefore, we can conclude that the regulations for large-scale retailer operations resulted in negative impacts on agricultural producers. Conclusions - Although the sales reduction due to the regulations for large-scale retailer operations are not great, the cumulative effects due to the continued compulsory closure of stores operated by large-scale retailers could be great. This paper suggests governmental programs that could help agricultural producer organizations to find new and effective marketing channels such as direct marketing, farmers' markets, exports, Internet shopping, and so on.
Large container carriers are suffering from lack of knowledge on reliable correlation allowances between model tests and full-scale trials, especially at fully loaded condition, Careful full-scale sea trial with a full loading of containers both in holds and on decks was carried out to clarify it. Model test results were analyzed by different methods but with the same measuring data to figure out appropriated correlations factors for each analysis methods, Even if it is no doubt that model test technique is one of the most reliable tool to predict full scale powering performance, its assumptions and simplifications which have been applied on the course of data manipulation and analysis need a feedback from sea trial data for a fine tuning, so called correlation factor. It can be stated that the best correlation allowances at fully loaded condition for both 2-dimensional and 3-dimensional analysis methods are fecund through the careful sea trial results and relevant study on the large size container carriers.
In the last meeting of KAS, we reported the first statistical study of Faraday rotation measure (RM) in the large-scale structure of the universe using the data of cosmological structure formation simulations. With a turbulence dynamo model for the intergalactic magnetic field (IGMF), we predicted that the root mean square of RM through filaments is \sim 1 rad/m^2. Future radio observatories such as the Square Kilometer Array (SKA) could detect this signal level. However, it is known that the typical foreground galactic RM is a few tens and less than ten rad/m^2 in the low and high galactic latitudes, respectively. So the RM in the large-scale structure could be detected only after the foreground galactic RM is removed. In this talk, we show how we remove the foreground galactic RM and what we obtain from the masked data, by using some noise models and masking techniques. Our results can be used to simulate future RM observations by SKA, and eventually to constrain the origin and evolution of the IGMF in the large-scale structure.
Park, Gott, & Choi (2008) found that when a galaxy is located within the virial radius from its closest neighbor and the neighbor is an elliptical, the probability of the galaxy to be an elliptical is very sensitive to the large-scale background density over a few Mpc scales. They suggested that the large-scale dependence can be arise if the temperature of a diffuse hot gas held by elliptical galaxies are higher in higher density environment. In this study, to understand the large-scale environment affects the X-ray properties of individual galaxies, we investigated the dependence of the X-ray luminosities of the elliptical galaxies on the large-scale environment using X-ray and optical data which we selected from the ROSAT All-Sky Survey and the Sloan Digital Sky Survey Data Release 7. To exclude galaxies embedded in an intra-group/cluster medium which could enhance their observed X-ray luminosity, we used isolated elliptical galaxies.
International Journal of Advanced Culture Technology
/
v.9
no.4
/
pp.268-273
/
2021
In this paper, we propose a sentiment analysis model that improves performance on small-scale data. A sentiment analysis model for small-scale data is proposed and verified through experiments. To this end, we propose Bagging-Bi-GRU, which combines Bi-GRU, which learns GRU, which is a variant of LSTM (Long Short-Term Memory) with excellent performance on sequential data, in both directions and the bagging technique, which is one of the ensembles learning methods. In order to verify the performance of the proposed model, it is applied to small-scale data and large-scale data. And by comparing and analyzing it with the existing machine learning algorithm, Bi-GRU, it shows that the performance of the proposed model is improved not only for small data but also for large data.
The modern large-scale surveys and state-of-the-art cosmological simulations produce various kinds of big data composed of millions and billions of galaxies. Inevitably, we need to adopt modern Big Data platforms to properly handle such large-scale data sets. In my talk, I will briefly introduce the de facto standard of modern Big Data platform, Apache Spark, and present some examples to demonstrate how Apache Spark can be utilized for solving data-driven astronomical problems.
In this paper, we propose a volume rendering method using grid computing for large-scale volume data. Grid computing is attractive because medical institutions and research facilities often have a large number of idle computers. A large-scale volume data is divided into sub-volumes and the sub-volumes are rendered using grid computing. When using grid computing, different computers rarely have the same processor speeds. Thus the return order of results rarely matches the sending order. However order is vital when combining results to create a final image. Job-Scheduling is important in grid computing for volume rendering, so we use an obstacle-flag which changes priorities dynamically to manage sub-volume results. Obstacle-Flags manage visibility of each sub-volume when line of sight from the view point is obscured by other subvolumes. The proposed Dynamic Job-Scheduling based on visibility substantially increases efficiency. Our Dynamic Job-Scheduling method was implemented on our university's campus grid and we conducted comparative experiments, which showed that the proposed method provides significant improvements in efficiency for large-scale volume rendering.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.13
no.12
/
pp.5972-5989
/
2019
With the onset of the big data age, data is growing exponentially, and the issue of how to optimize large-scale data processing is especially significant. Large-scale global optimization (LSGO) is a research topic with great interest in academia and industry. Spark is a popular cloud computing framework that can cluster large-scale data, and it can effectively support the functions of iterative calculation through resilient distributed datasets (RDD). In this paper, we propose a hybrid mechanism of particle swarm optimization (PSO) and differential evolution (DE) algorithms based on Spark (SparkPSODE). The SparkPSODE algorithm is a parallel algorithm, in which the RDD and island models are employed. The island model is used to divide the global population into several subpopulations, which are applied to reduce the computational time by corresponding to RDD's partitions. To preserve population diversity and avoid premature convergence, the evolutionary strategy of DE is integrated into SparkPSODE. Finally, SparkPSODE is conducted on a set of benchmark problems on LSGO and show that, in comparison with several algorithms, the proposed SparkPSODE algorithm obtains better optimization performance through experimental results.
Geospatial Information Systems (GIS) have been employed to systematically manage and design land use in urban areas. This has increased the need for more accurate vector and raster data. In Korea, l/l,000-scale digital maps are used as vector data for the facility management in urban areas. This has increased the need for large scale orthoimages. Orthoimages generated from aerial imagery can provide accurate information, making possible the more effective city management. However, there is a large problem in using the orthoimages, i.e., currently available conventional orthoimages have not been generated based on Digital Elevation Model (DEM) that takes into account the building heights. So this causes the displacements of building image in large scale orthoimages. The present study is an attempt to generate the large scale orthoimages based on building DEM. The semiautomatic building extraction method can detect building outlines by mouse clicking on either building roofs or corners. Building DEM, based on the outline and calculated building height, was used to produce the large scale orthoimages with the corrected building occlusion.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.