• Title/Summary/Keyword: Large Rotation

Search Result 587, Processing Time 0.026 seconds

Evaluation of Effect of Rock Joints on Seismic Response of Tunnels (터널의 지진응답에 대한 암반 절리의 영향 평가)

  • Yoo, Jin-Kwon;Chang, Jaehoon;Park, Du-Hee;Sagong, Myung
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.9
    • /
    • pp.41-55
    • /
    • 2014
  • In performing seismic analysis of tunnels, it is a common practice to ignore the rock joints and to assume that the rock mass surrounding the tunnel is continuous. The applicability of this assumption has not yet been validated in detail. This study performs a series of pseudo-static discrete element analyses to evaluate the effect of rock joint on the seismic response of tunnels. The parameters considered are joint intersection location, joint spacing, joint stiffness, joint dip, and interface stiffness. The results show that the joint stiffness has the most critical influence on the tunnel response. The tunnel response increases with the spacing, resulting in localized concentration of moment and shear stress. The response of the tunnel is the lowest for joints dipping at $45^{\circ}$. This is because large shear stresses result in rotation of the principal planes by $45^{\circ}$. In summary, the weathered and smooth, vertical or horizontal, and widely spaced joint set will significantly increase the tunnel response under seismic loading. The tunnel linings are shown to be most susceptible to damage due to induced shear stress, and therefore should be checked in the seismic design.

Using the Arthroscopic Remplissage of Anterior Shoulder Instability with Hill-Sachs Lesion (전방 견관절 불안정성에서 Hill-sachs 병변의 관절경적 Remplissage)

  • Ko, Sang-Hun;Jung, Kwang-Hwan;Shin, Seung-Myeong;Park, Han-Chang
    • Clinics in Shoulder and Elbow
    • /
    • v.14 no.1
    • /
    • pp.53-58
    • /
    • 2011
  • Purpose: We evaluated the minimal 1 year follow-up results (shoulder stability and the clinical and functional results) for the Remplissage technique to fill a Hill-Sachs lesion. Materials and Methods: The subjects were 12 patients who could be followed up for more than 12 months after the "Remplissage" procedures in our hospital from December 2008 to November 2009. Their mean age was 27.9 years old and the mean follow-up was 19 months. The evaluations included the ROM, the ASES score, the KSSI score, the ROWE score and postoperative MRI. Results: On the postoperative functional evaluation after an average of 16 months, the ASES score improved from 50.8 preoperatively to 78.3 postoperatively, the KSSI score improved form 44.5 preoperatively to 81.0 postoperatively and the ROWE score improved from 40.2 preoperatively to 84.3 postoperatively. After an average 14 months for all the cases, the range of movement was nearly in the normal range, which is 178.6${\pm}$18.6 (165~180) degrees for forward flexion and 49.3${\pm}$10 (43~60) degrees for external rotation. Conclusion: For recurrent shoulder instability with a large Hill-Sachs lesion, the Remplissage technique has a good outcome after more than 1 year follow-up in terms of the shoulder stability and the clinical and functional results.

Construction of 3D Digital Maps Using 3D Symbols (3차원 심볼을 활용한 3차원 수치지도 제작에 관한 연구)

  • Park, Seung-Yong;Lee, Jae-Bin;Yu, Ki-Yun;Kim, Yong-Il
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.24 no.5
    • /
    • pp.417-424
    • /
    • 2006
  • Despite of many researches related to create 3D digital maps, it is still time-consuming and costly because a large part of 3D digital mapping is conducted manually. To circumvent this limitation, we proposed methodologies to create 3D digital maps with 3D symbols automatically. For this purpose, firstly, the 3D symbol library to represent 3D objects as 3D symbols was constructed. In this library, we stored the attribute and geometry information of 3D objects which define types and shapes of symbols respectively. These information were used to match 3D objects with 3D symbols and extracted from 2D digital maps and LiDAR(Light Detection and Ranging) data. Then, to locate 3D symbols into a base map automatically, we used predefined parameters such as the size, the height, the rotation angle and the center of gravity of 3D objects which are extracted from LiDAR data. Finally, the 3D digital map in urban area was constructed and the results were tested. Through this research, we can identify that the developed algorithms can be used as effective techniques for 3D digital mapping.

A study on reduction of sensibility dimension for selection of wallpaper (벽지 선택을 위한 감성 차원 축소에 관한 연구)

  • Chun Young-Min;Kim Soon-Young;Kim Sung-Hwan;Chung Sung-Suk
    • Science of Emotion and Sensibility
    • /
    • v.8 no.4
    • /
    • pp.333-344
    • /
    • 2005
  • The sensitivity adjectives on wall paper are collected. With the collected sensitivity adjective, we are going to develop the model which can recommend the wallpaper to customer. A large number of adjectives describing affective responses were collected from such diverse sources as questionnaire survey results, field survey results and internet survey result. To search the representative adjective of collected adjective, we used the diverse statistical analysis method. We attempted to decide the axis name of dimension through the MDS(Multi-Dimensional Scale) analysis method using the similarity matrix an4 to find a three or four reduced factors through the factor analysis method using the varimax rotation method. The result of the analysis showed that the reduced factors could account about $82\%$ when the number of factor is three(popular, elegance, and passable) ant about $93\%$ when the number of factor is four (elegance, passable, beautiful, and affectionate) On the basis of this result, we expect it can be used to develop the model recommending the wallpaper.

  • PDF

p-Version Finite Element Analysis of Composite Laminated Plates with Geometric and Material Nonlinearities (기하 및 재료비선형을 갖는 적층평판의 p-Version 유한요소해석)

  • 홍종현;박진환;우광성
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.15 no.3
    • /
    • pp.491-499
    • /
    • 2002
  • A p-version finite element model based on degenerate shell element is proposed tot the analysis of orthotropic laminated plates. In the nonlinear formulation of the model, the total Lagrangian formulation is adopted with large deflection and moderate rotation being accounted tot in the sense of yon Karman hypothesis. The material model is based on the Huber-Mises yield criterion and Prandtl-Reuss flow rule in accordance with the theory of strain hardening yield function, which is generalized lot anisotropic materials by introducing the parameters of anisotropy. The model is also based on extension of equivalent-single layer laminate theory(ESL theory) with shear deformation, leading to continuous shear strain at the interface of two layers. The integrals of Legendre polynomials are used for shape functions with p-level varying from 1 to 10. Gauss-Lobatto numerical quadrature is used to calculate the stresses at the nodal points instead of Gauss points. The validity of the proposed P-version finite element model is demonstrated through several comparative points of iew in terms of ultimate load, convergence characteristics, nonlinear effect, and shape of plastic tone.

A Design of Dual-band Microstrip Antennas using Stacked Inverted-L-shaped Parasitic Elements for GPS Applications (GPS용 역 L형 기생소자를 이용한 이중대역 마이크로스트립 안테나 설계)

  • Kim, Jun-Won;Woo, Jong-Myung
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.14 no.3
    • /
    • pp.31-37
    • /
    • 2015
  • In this paper, newly proposed dual-band microstrip antennas using stacked inverted-L-shaped parasitic elements are presented for GPS $L_1(1.575GHz)$ and $L_2(1.227GHz)$ bands. For making dual band which has large interval, ${\lambda}/4$($L_1$ band) inverted-L-shaped parasitic elements were stacked at both side of radiation apertures on the half-wavelength($L_2$ band) patch antennas. The resonance in the parasitic elements occurs through coupling to the patch. Next, due to using circular polarization at GPS, ${\lambda}/4$($L_1$ band) inverted-L-shaped parasitic elements was stacked using sequential rotation technique on the patch and both side of the diagonal corners of the antenna were eliminated to make dual-band circular polarization. The designed circular polarized antenna's dimensions are $0.43{\lambda}L{\times}0.43{\lambda}L{\times}0.06{\lambda}L$ (${\lambda}L$ is the free-space wavelength at 1.227 GHz). Measured -10 dB bandwidths was 120 MHz(7.6%) and 82.5 MHz(6.7%) at GPS $L_1$ and $L_2$ bands. and 3 dB axial ration bandwidths are 172 MHz(10.9%) and 25 MHz(2.03%), respectively. All of these cover the respective required system bandwidths. Within each of the designed bands, broadside radiation patterns were observed.

FORMATION AND EVOLUTION OF SELF-INTERACTING DARK MATTER HALOS

  • AHN KYUNGJIN;SHAPIRO PAUL R.
    • Journal of The Korean Astronomical Society
    • /
    • v.36 no.3
    • /
    • pp.89-95
    • /
    • 2003
  • Observations of dark matter dominated dwarf and low surface brightness disk galaxies favor density profiles with a flat-density core, while cold dark matter (CDM) N-body simulations form halos with central cusps, instead. This apparent discrepancy has motivated a re-examination of the microscopic nature of the dark matter in order to explain the observed halo profiles, including the suggestion that CDM has a non-gravitational self-interaction. We study the formation and evolution of self-interacting dark matter (SIDM) halos. We find analytical, fully cosmological similarity solutions for their dynamics, which take proper account of the collisional interaction of SIDM particles, based on a fluid approximation derived from the Boltzmann equation. The SIDM particles scatter each other elastically, which results in an effective thermal conductivity that heats the halo core and flattens its density profile. These similarity solutions are relevant to galactic and cluster halo formation in the CDM model. We assume that the local density maximum which serves as the progenitor of the halo has an initial mass profile ${\delta}M / M {\propto} M^{-{\epsilon}$, as in the familiar secondary infall model. If $\epsilon$ = 1/6, SIDM halos will evolve self-similarly, with a cold, supersonic infall which is terminated by a strong accretion shock. Different solutions arise for different values of the dimensionless collisionality parameter, $Q {\equiv}{\sigma}p_br_s$, where $\sigma$ is the SIDM particle scattering cross section per unit mass, $p_b$ is the cosmic mean density, and $r_s$ is the shock radius. For all these solutions, a flat-density, isothermal core is present which grows in size as a fixed fraction of $r_s$. We find two different regimes for these solutions: 1) for $Q < Q_{th}({\simeq} 7.35{\times} 10^{-4}$), the core density decreases and core size increases as Q increases; 2) for $Q > Q_{th}$, the core density increases and core size decreases as Q increases. Our similarity solutions are in good agreement with previous results of N-body simulation of SIDM halos, which correspond to the low-Q regime, for which SIDM halo profiles match the observed galactic rotation curves if $Q {\~} [8.4 {\times}10^{-4} - 4.9 {\times} 10^{-2}]Q_{th}$, or ${\sigma}{\~} [0.56 - 5.6] cm^2g{-1}$. These similarity solutions also show that, as $Q {\to}{\infty}$, the central density acquires a singular profile, in agreement with some earlier simulation results which approximated the effects of SIDM collisionality by considering an ordinary fluid without conductivity, i.e. the limit of mean free path ${\lambda}_{mfp}{\to} 0$. The intermediate regime where $Q {\~} [18.6 - 231]Q_{th}$ or ${\sigma}{\~} [1.2{\times}10^4 - 2.7{\times}10^4] cm^2g{-1}$, for which we find flat-density cores comparable to those of the low-Q solutions preferred to make SIDM halos match halo observations, has not previously been identified. Further study of this regime is warranted.

Structure and Reactivity of Alkylchloroformates. MO Theoretical Interpretations on Halide Exchange Reaction (염화 포름산 알킬의 구조와 반응성. 할로겐화 이온 교환반응에 대한 분자궤도론적 고찰)

  • Lee, Bon Su;Lee, Ik Choon
    • Journal of the Korean Chemical Society
    • /
    • v.18 no.4
    • /
    • pp.223-238
    • /
    • 1974
  • CNDO/2 MO theoretical studies and kinetic studies of halide exchange reactions for alkylchloroformates have been carried out in order to investigate structure-reactivity relationship of alkylchloroformates. From the result of energetics, it was concluded that the most stable configuration of alkylchloroformate is that in which alkyl group and chlorine are trans to each other, and that the hindered rotation about the bond between the carbonyl carbon and alkoxy-oxygen bond is attributed to the ${\pi}-$electron delocalization. It has been found that the large charge separation is due to -M effect of carbonyl and alkoxy oxygens and-I effect of chlorine. The order of rates in solvents studied was $(CH_3)_2 > CO > CH_3CN{\gg}MeOH.$$I^->Br^->Cl^-$ in protic solvent, and of Cl^->Br^- >I^-$ in dipolar aprotic solvents. Alkyl group contribution has the decreasing order of $CH_3-> C_2H-{\gg}i-C_3H_7-.$ The solvent effect has been interpreted on the basis of initial and final state contribution. A transition state model has been suggested, and it has been proposed that the most favorable mechanism is the addition-elimination. From the results of activation parameters and electronic properties, an energy profile has been proposed. Structural factors determining reactivities of alkylchloroformates have been shown to be charge, energy level of ${\alpha}^*LUMO$ to C-Cl bond and ${\alpha}^{\ast} $antibonding strength with respect to C-Cl bond in this MO. Charge and polarizability of nucleophile, and the interaction of these effects with solvent structures are also found to be important.

  • PDF

Polarimetry of solar system small bodies using the Seoul National University 61cm telescope and TRIPOL

  • Jin, Sunho;Ishiguro, Masateru;Kwon, Yuna Grace;Geem, Jooyeon;Bach, Yoonsoo P.;Seo, Jinguk;Sasago, Hiroshi;Sato, Shuji
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.1
    • /
    • pp.64.2-64.2
    • /
    • 2019
  • It is known that lights scattered by comets and asteroids are partially polarized. From polarimetric observations of those objects, we can investigate physical properties, such as albedos, sizes of cometary dust particles and regolith of asteroids. Since the polarization degrees of those objects highly depend on their phase angles (Sun-object-observer's angles), long-term monitoring observations are required. Moreover, comets show unforeseeable activations (i.e., outbursts) which need follow-up observations to understand the mechanism. In order to realize such monitoring and transient observations, we installed the Triple-Range Imager and POLarimeter (TRIPOL) on the 61cm telescope of Seoul National University (Hereafter, SNU) Gwanak campus. With this combination, we can obtain g', r', i' bands photopolarimetric images simultaneously with $8.0^{\prime}{\times}8.0^{\prime}$ field of view and pixel resolution of 0.94" pixel-1. Here, we make a presentation regarding the photometric and polarimetric performances of TRIPOL on the SNU 61cm telescope. In addition, we introduce initial polarimetric results of asteroid and comets with the instruments. First, we determine the limiting magnitudes (defined as magnitudes for S/N=5) of $15.17{\pm}0.06$ (g'-band), $15.68{\pm}0.01$ (r'-band), $16.24{\pm}0.03$ (I'-band), respectively, with total 240-seconds exposure (four 60-seconds exposure images, each was taken at different rotation angle for the half-wave plate). Second, we found that the instrumental polarization is negligibly small, ($-0.32{\pm}0.04%$ in the g', $-0.36{\pm}0.05%$ in the r' and $-0.21{\pm}0.04%$ in the i'-bands), while the polarization efficiencies are large enough to maximize the performance (i.e., $97.52{\pm}0.03%$ in the g', $98.83{\pm}0.02%$ in the r' and $99.15{\pm}0.02%$ in the i'-bands). With the instruments, we made observations of three Jupiter-family comets, 21P/Giacobini-Zinner, 38P/Stephan-Oterma, and 46P/Wirtanen and plan to observe one near-Earth asteroid, (433) Eros, on a trial basis. Especially for comets, we discriminate signals from dust and gas to eliminate gas contamination, which are known to change observed degree of linear polarization, using multi-band images. We confirm that the phase angle dependency of these comets are consistent with previous observations, probably because polarimetric property of Jupiter-family comets are broadly homogeneous unlike asteroids. We will also describe future observation plans using TRIPOL and SNU 61cm telescope.

  • PDF

A Study on Structural Characteristics of Axial Fans Operating Speed Using Finite Element Analysis (유한요소해석을 이용한 축류팬 운전속도별 구조특성에 대한 연구)

  • Kook, Jeong-Keun;Cho, Byung-Kwan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.2
    • /
    • pp.593-601
    • /
    • 2021
  • The axial fan is an element of a blower used for ventilation in various industrial fields. Many studies on aerodynamic performance have been conducted to assess axial fans using fluid dynamics. The subject was a large axial fan size, 1800 mm in diameter with 100 horsepower. The blower's axial fan consisted of blades, hubs, hub caps, and bosses are important components. The blade design has a great influence on the aerodynamic performance. 3D point data is extracted using an aerodynamic performance prediction program, and a 3D modeling shape is generated. The blades and hubs, which are important components, can be easily modified if processed by cutting owing to the environment in which blades and hubs are manufactured through die casting or gravity casting. In this study, the structural safety of components and the analysis results of weak areas at the rated operating speed of the axial fan were verified using the maximum stress and safety factor. The tip clearance reflected in the design was the rotation of the blade. To check whether there is interference with other components, the displacement result was derived to verify the structural safety of the axial fan.