• Title/Summary/Keyword: Large Electric Motor

Search Result 131, Processing Time 0.026 seconds

Vibration Analysis of Pump/Turbine and Generator/Motor Rotor System for Pumped Storage Power Stations (양수발전소용 펌프수차${\cdot}$발전기 전동기 축계의 진동해석)

  • Yang, Bo-Suk;Choi, Byung-Gun;Kim, Young-Han;Ha, Hyun-Cheon
    • The KSFM Journal of Fluid Machinery
    • /
    • v.2 no.2 s.3
    • /
    • pp.39-45
    • /
    • 1999
  • Pumped-storage power plants pumps the water from the lower reservoir to the upper reservoir using the extra electric power at night and generates electric power in the daytime. Currently it tends to be a high-head large-capacity machine. In this paper, we developed the computer programs for vibration analysis of the pump/turbine and generator/motor rotor system considering electromagnetic force, hydrodynamic unbalance force, dynamic characteristics of guide bearings and add mass of water. This program was verified by applying it to the real model and calculating the critical speed, natural mode and unbalance response.

  • PDF

A position control of step motor with minimum time sliding surface (최단시간 슬라이딩 면에 의한 스텝모터의 위치제어)

  • You, Wan-Sik;Park, Hyung-Nam;Kim, Yeong-Seok
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.1 no.2
    • /
    • pp.99-104
    • /
    • 1995
  • For the robust control, sliding mode control has gained a great attention. Sliding mode control has the good robustness, because it makes the state of system reach the origin of the state space, by a varying the structure of system on the sliding surface. The slope of sliding surface affects to the control performance. If it is small, robustness is increased at the expense of reaching time. On the contrary, if it is large, reaching time is decreased at the expense of robustness and overshoot. In this paper, to design the optimal sliding surface, optimal control theory is introduced. To confirm the validity of the proposed method, the position control of step motor is implemented.

  • PDF

Torque Ripples Minimization of DTC IPMSM Drive for the EV Propulsion System using a Neural Network

  • Singh, Bhim;Jain, Pradeep;Mittal, A.P.;Gupta, J.R.P.
    • Journal of Power Electronics
    • /
    • v.8 no.1
    • /
    • pp.23-34
    • /
    • 2008
  • This paper deals with a Direct Torque Control (DTC) of an Interior Permanent Magnet Synchronous Motor (IPMSM) for the Electric Vehicle (EV) propulsion system using a Neural Network (NN). The Conventional DTC with optimized switching lookup table and three level torque controller generates relatively large torque ripples in an electric vehicle motor drive. For reducing the torque ripples, a three level torque controller is hereby replaced by the five level torque controller. Furthermore, the switching lookup table of the five level torque controller based DTC is replaced with a Neural Network. These DTC schemes of an IPMSM drive are simulated using MATLAB/SIMULINK. The simulated results are compared with the conventional DTC and it is found that the ripples in the torque, as well as in the stator current, are reduced drastically.

Development of On-Line Partial Discharge Monitoring System in High Voltage Motors (고압전동기 운전중 부분방전 감시 시스템 개발)

  • Kim, Hee-Dong;Kong, Tae-Sik;Ju, Young-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07b
    • /
    • pp.1175-1178
    • /
    • 2004
  • On-line partial discharge(PD) monitoring system has been developed to monitor in operating large motor stator insulations. This system makes use of remote diagnosis techniques for the evaluation of PD activity in the control center of thermal power plant. This system can be remotely accessed via a modem to build database, analyze status and interpret the pattern of PD activity. A personnel computer is generally connected to ten motors to continuous measurement of the PD activity. The test data can be easily interpreted by a maintenance staff. For assessing the condition of stator winding in motors, this system ensures a reliable measurement and accurate estimation. Capacitive couplers used for on-line PD measurement have been 80pF. The maximum PD magnitude(Qmax), PD pattern and normalized quantity number(NQN) were performed by this system.

  • PDF

A Control Method for Power-Assist Devices using a BLDC Motor for Manual Wheelchairs

  • Kim, Dong-Youn;Kim, Yong-Hyu;Kim, Kwang-Sik;Kim, Jang-Mok
    • Journal of Power Electronics
    • /
    • v.16 no.2
    • /
    • pp.798-804
    • /
    • 2016
  • This paper proposes a new operation and control strategy for Power-Assisted Wheelchairs (PAW) using one brushless DC (BLDC) motor. The conventional electrical wheelchairs are too heavy and large for one person to move because they have two electric motor wheels. On the other hand, the proposed PAW system has a small volume and is easy to move due to the presence of a single wheel motor. Unlike the conventional electric wheelchairs, this structure for a PAW does not have a control joystick to reduce its weight and volume. To control the wheelchair without a joystick, a special control system and algorithm are needed for proper operation of the wheelchair. In the proposed PAW system uses only one sensor to detect the acceleration and direction of PAW's movement. By using this sensor, speed control can be achieved. With a speed control system, there are three kinds of operations that can be done on the speed of a PAW: the increment of PAW speed by summing external force, the decrement of PAW speed by subtracting external force, and emergency breaking by evaluating the time duration of external force. The validity of the proposed algorithm is verified through experimental results.

Improved Responsiveness of Model-Based Sensorless Control for Electric-Supercharger Motor using an Position Error Compensation (위치 오차 보상을 통한 전동식 슈퍼차저 모터의 모델 기반 센서리스 응답성 개선)

  • Park, Gui-Yeol;Hwang, Yo-Han;Heo, Nam;Lee, Ju
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.24 no.1
    • /
    • pp.9-15
    • /
    • 2019
  • Sensorless electric superchargers have recently been actively developed to provide a large amount of oxygen to engines in order assist the combustion process for miniaturizing the engines and improving fuel efficiency. The model-based sensorless method for surface-mounted permanent magnet synchronous motors has a disadvantage in that the system may become unstable due to parameter variations in low-speed operation and the rapid-acceleration section. An electric supercharger requires fast response to improve the engine response delay, such as the turbocharger turbo-rack. Therefore, the responsiveness must be improved to use the model-based sensorless system. The position compensation algorithm designed in this study is controlled by converting the position error into the beta, which is the angle formed by the d-axis and the stator current during sudden speed change. In this study, we improved the response of the model-based sensorless system through the algorithm and verified the algorithm validity by applying the algorithm to an actual dual-motor supercharger.

Analysis of Electric Field Distribution according to Surface Roughness of Aramid Insulating Paper Using Boundary Element Method (경계요소법을 이용한 표면 거침도에 따른 아라미드 절연지의 전계분포 해석)

  • Kim, Tag-Yong;Ahn, Byung-Chul;Cho, Kyung-Soon;Park, Hyung-Jun;Hong, Jin-Woong
    • Journal of the Korean Society of Safety
    • /
    • v.21 no.5 s.77
    • /
    • pp.34-39
    • /
    • 2006
  • In this paper, we investigated the electric field distribution according to the roughness in aramid insulating paper for electric machine. Aramid insulating paper has been used to electric insulating of the traction motor and generators for large capacity. We studied the electric field distribution using boundary element method for Aramid insulating paper. As a result of simulation, the electric field increased according to the surface roughness existence. Electric field decreased due to radius of surface roughness reduction, and Electric field concentration appeared at electrode boundary and rough surface.

A Study on the Hydraulic Automatic Gauge Control System of Adaptive Mass Flow Method (Adaptive mass flow method 유압압하식 자동 두께제어 장치에 관한 연구)

  • 윤순현;김문경
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.20 no.4
    • /
    • pp.101-107
    • /
    • 1996
  • This test was performed on the hydraulic automatic gauge control(AGC) system of adaptive mass flow method. Fundamental purpose of this study are performance evaluation of this AGC system under the actual rolling condition. It was concluded that the response of AGC system depends on the dynamic characteristics of a reel motor or roll position. The test results are as follows : 1) The control method of reel motor current is better than than of the roll position as AGC system. 2) The more steel strip thickness of delivery side is thick, the larger the gauge deviation is large, and the more it is thin, the larger the gauge deviation rate is large. 3) Because the gauge deviation is large at acceleration and deceleration speed than steady speed, so AGC system is better to adopt over 50m/min. By applying this AGC system, not only the accurary in strip thickness were improved but also productivity was improved dramatically.

  • PDF

A Study on the Insulation Reliablity of Form-Wound Stator Windings by Complex Degradation (복합열화에 의한 형권 고정자권선의 절연신뢰성에 관한 연구)

  • 이헌돈;김상걸;오현석;왕종배;김기준;이준웅
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.152-155
    • /
    • 2000
  • PWM inverter-fed traction motor is able to occur problems by additive transient surge stress and harmonic loss in contrast with motor driven by 60Hz sine wave alternating source. Therefore in this paper, test method and standard of existed already were investigate, "thermal + electric" complex degradation test that considered additive degradation occurred by inverter drive carried out in order to obtain insulation reliability of traction motor driven by inverter. It seems that this test method confers large value of application at reliability estimation which the subject of complete motor not windings sample from now on.

  • PDF

A Study on the Voltage Sags and Compensation of Large Industrial Distribution System using EMTDC (EMTDC를 이용한 대형 산업체 수전설비의 전압저감해석과 보상에 관한 연구)

  • Song, Bin-Tae;Yu, In-Keun
    • Proceedings of the KIEE Conference
    • /
    • 1998.07c
    • /
    • pp.1106-1110
    • /
    • 1998
  • Voltage Sags, different from electric outages, are important to industrial reliability because modern process controls are often sensitive to voltage sag, the designer and operator should recognize sag characteristics of the electric system not only to protect malfunction of equipment but also to make best choices between reliability and equipment cost. The voltage sags and compensation countermeasures of large md industrial distribution systems have been simulated using EMTDC. The causes of voltage sags occurred in the system are discussed in detail and several countermeasures including the transfer of large induction motor from normal power source to backup source are recommended in order to enhance the ride-through characteristics of equipments.

  • PDF