• Title/Summary/Keyword: Large Displacements

Search Result 322, Processing Time 0.02 seconds

Three Dimensional FE Analysis of Acoustic Emission of Composite Plate (복합재료 파손 시 발생하는 음향방출의 3차원 유한요소 해석)

  • Paik, Seung-Hoon;Park, Si-Hyong;Kim, Seung Jo
    • Composites Research
    • /
    • v.18 no.5
    • /
    • pp.15-20
    • /
    • 2005
  • In this paper, damage induced acoustic emission in the composite plate in numerically simulated by using the three dimensional finite element method and explicit time integration. Acoustic source is modeled by equivalent volume source. To verify the proposed method, dynamic displacements due to the elastic wave are compared with the experiment when the fiber is broken in the single fiber embedded isotropic plate. For the laminated composite plates, the results are compared between homogenized model and DNS approach which models fibers and matrix separately. To capture high frequencies in the elastic wave, small time step size and a large number of meshes are required. The parallel computing technology is introduced to solve a large scale problem efficiently.

Optical Flow Estimation of Large Displacements from Real Sequential Images

  • Kim, Jin-Woo
    • Journal of information and communication convergence engineering
    • /
    • v.9 no.3
    • /
    • pp.319-324
    • /
    • 2011
  • In computing the optical flow. Horn and Schunck's method which is a representative algorithm is based on differentiation. But it is difficult to estimate the velocity for a large displacement by this algorithm. To cope with this problem multigrid method has been proposed. In this paper, we have proposed a scaled multigrid algorithm which the initial flow for a level is calculated by the summation of the optimally scaled flow and error flow. The optimally scaled flow is the scaled expanded flow of the previous level, which can generate an estimated second image having the least RMS error with respect to the original second image, and the error flow is the flow between the estimated second image (generated by the optimally scaled flow) and the original second image. The flow for this level is then estimated using the original first and second images and the initial flow for that level. From among the various coarsest starting levels of the multigrid algorithm, we select the one that finally gives the best estimated flow. Better results were achieved using our proposed method compared with Horn and Schunck's method and a conventional multigrid algorithm.

Large deformation analysis for functionally graded carbon nanotube-reinforced composite plates using an efficient and simple refined theory

  • Bakhti, K.;Kaci, A.;Bousahla, A.A.;Houari, M.S.A.;Tounsi, A.;Adda Bedia, E.A.
    • Steel and Composite Structures
    • /
    • v.14 no.4
    • /
    • pp.335-347
    • /
    • 2013
  • In this paper, the nonlinear cylindrical bending behavior of functionally graded nanocomposite plates reinforced by single-walled carbon nanotubes (SWCNTs) is studied using an efficient and simple refined theory. This theory is based on assumption that the in-plane and transverse displacements consist of bending and shear components in which the bending components do not contribute toward shear forces and, likewise, the shear components do not contribute toward bending moments. The material properties of SWCNTs are assumed to be temperature-dependent and are obtained from molecular dynamics simulations. The material properties of functionally graded carbon nanotube-reinforced composites (FG-CNTCRs) are assumed to be graded in the thickness direction, and are estimated through a micromechanical model. The fundamental equations for functionally graded nanocomposite plates are obtained using the Von-Karman theory for large deflections and the solution is obtained by minimization of the total potential energy. The numerical illustrations concern the nonlinear bending response of FG-CNTRC plates under different sets of thermal environmental conditions, from which results for uniformly distributed CNTRC plates are obtained as comparators.

Influences of Stiffness Distributions on Hydroelastic Responses of Very Large floating Structures (강성분포의 변화가 초대형 부유식 구조물의 유탄성응답에 미치는 영향 고찰)

  • Kim, Byoung-Wan;Hyoung, Jo-Hyun;Hong, Sa-Young;Cho, Seok-Hyu
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.42 no.3
    • /
    • pp.220-232
    • /
    • 2005
  • Influences of stiffness distributions on hydroelastic responses of very large floating structures (VLFS) are studied in this paper. Hydroelastic responses are calculated by direct method employing higher-order boundary element method (HOBEM) for fluid analysis and finite element method (FEM) for structure analysis. In structural analysis using FEM, Mindlin plate elements are used. An 1 km-long VLFS with uniform stiffness and modified VLFS with varying stiffness distributions are considered in numerical analysis. Responses of VLFS increase in flexible parts and decrease in stiff Parts. Reduction degree of displacements of VLFS with stiffened center is larger than that of VLFS with stiffened sides.

Large displacement analysis of inelastic frame structures by convected material frame approach

  • Chiou, Yaw-Jeng;Wang, Yeon-Kang;Hsiao, Pang-An;Chen, Yi-Lung
    • Structural Engineering and Mechanics
    • /
    • v.13 no.2
    • /
    • pp.135-154
    • /
    • 2002
  • This paper presents the convected material frame approach to study the nonlinear behavior of inelastic frame structures. The convected material frame approach is a modification of the co-rotational approximation by incorporating an adaptive convected material frame in the basic definition of the displacement vector and strain tensor. In the formulation, each discrete element is associated with a local coordinate system that rotates and translates with the element. For each load increment, the corresponding strain-displacement and nodal force-stress relationships are defined in the updated local coordinates, and based on the updated element geometry. The rigid body motion and deformation displacements are decoupled for each increment. This modified approach incorporates the geometrical nonlinearities through the continuous updating of the material frame geometry. A generalized nonlinear function is used to derive the inelastic constitutive relation and the kinematic hardening is considered. The equation of motion is integrated by an explicit procedure and it involves only vector assemblage and vector storage in the analysis by assuming a lumped mass matrix of diagonal form. Several numerical examples are demonstrated in close agreement with the solutions obtained by the ANSYS code. Numerical studies show that the proposed approach is capable of investigating large deflection of inelastic planar structures and providing an excellent numerical performance.

Large deflection analysis of laminated composite plates using layerwise displacement model

  • Cetkovic, M.;Vuksanovic, Dj.
    • Structural Engineering and Mechanics
    • /
    • v.40 no.2
    • /
    • pp.257-277
    • /
    • 2011
  • In this paper the geometrically nonlinear continuum plate finite element model, hitherto not reported in the literature, is developed using the total Lagrange formulation. With the layerwise displacement field of Reddy, nonlinear Green-Lagrange small strain large displacements relations (in the von Karman sense) and linear elastic orthotropic material properties for each lamina, the 3D elasticity equations are reduced to 2D problem and the nonlinear equilibrium integral form is obtained. By performing the linearization on nonlinear integral form and then the discretization on linearized integral form, tangent stiffness matrix is obtained with less manipulation and in more consistent form, compared to the one obtained using laminated element approach. Symmetric tangent stiffness matrixes, together with internal force vector are then utilized in Newton Raphson's method for the numerical solution of nonlinear incremental finite element equilibrium equations. Despite of its complex layer dependent numerical nature, the present model has no shear locking problems, compared to ESL (Equivalent Single Layer) models, or aspect ratio problems, as the 3D finite element may have when analyzing thin plate behavior. The originally coded MATLAB computer program for the finite element solution is used to verify the accuracy of the numerical model, by calculating nonlinear response of plates with different mechanical properties, which are isotropic, orthotropic and anisotropic (cross ply and angle ply), different plate thickness, different boundary conditions and different load direction (unloading/loading). The obtained results are compared with available results from the literature and the linear solutions from the author's previous papers.

Coupled CFD-FEM simulation of hydrodynamic responses of a CALM buoy

  • Gu, Haoyuan;Chen, Hamn-Ching;Zhao, Linyue
    • Ocean Systems Engineering
    • /
    • v.9 no.1
    • /
    • pp.21-42
    • /
    • 2019
  • In this paper, the Finite-Analytic Navier-Stokes (FANS) code is coupled with an in-house finite-element code to study the dynamic interaction between a floating buoy and its mooring system. Hydrodynamic loads on the buoy are predicted with the FANS module, in which Large Eddy Simulation (LES) is used as the turbulence model. The mooring lines are modeled based on a slender body theory. Their dynamic responses are simulated with a nonlinear finite element module, MOORING3D. The two modules are coupled by transferring the forces and displacements of the buoy and its mooring system at their connections through an interface module. A free-decay model test was used to calibrate the coupled method. In addition, to investigate the capability of the present coupled method, numerical simulations of two degree-of-freedom vortex-induced motion of a CALM buoy in uniform currents were performed. With the study it can be verified that accurate predictions of the motion responses and tension responses of the CALM buoy system can be made with the coupling CFD-FEM method.

Seismic Response Analysis of Dome-Shaped Large Spatial Structures According to TMD Installation (TMD 설치에 따른 돔 형상 대공간 구조물의 지진응답분석)

  • Ku, Seung-Yeon;Yoo, Sang-Ho;Kim, Hyun-Su;Kang, Joo-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.23 no.4
    • /
    • pp.27-34
    • /
    • 2023
  • In this study, the seismic response characteristics of the three analysis model with or without TMD were investigated to find out the effective dome shape. The three analysis models are rib type, lattice type and geodesic type dome structure composed of space frame. The maximum vertical and horizontal displacements were evaluated at 1/4 point of the span by applying the resonance harmonic load and historical earthquake loads (El Centro, Kobe, Northridge earthquakes). The study of the effective TMD installation position for the dome structure shows that seismic response control was effective when eight TMDs were installed in all types of analysis model. The investigation of the efficiency of TMD according to dome shape presents that lattice dome and geodesic dome show excellent control performance, while rib dome shows different control performance depending on the historical seismic loads. Therefore, lattice and geodesic types are desirable for seismic response reduction using TMD compared to rib type.

Shake table responses of an RC low-rise building model strengthened with buckling restrained braces at ground story

  • Lee, Han Seon;Lee, Kyung Bo;Hwang, Kyung Ran;Cho, Chang Seok
    • Earthquakes and Structures
    • /
    • v.5 no.6
    • /
    • pp.703-731
    • /
    • 2013
  • In order to verify the applicability of buckling restrained braces (BRB's) and fiber reinforced polymer (FRP) sheets to the seismic strengthening of a low-rise RC building having the irregularities of a soft/weak story and torsion at the ground story, a series of earthquake simulation tests were conducted on a 1:5 scale RC building model before, and after, the strengthening, and these test results are compared and analyzed, to check the effectiveness of the strengthening. Based on the investigations, the following conclusions are made: (1) The BRB's revealed significant slips at the joint with the existing RC beam, up-lifts of columns from RC foundations and displacements due to the flexibility of foundations, and final failure due to the buckling and fracture of base joint angles. The lateral stiffness appeared to be, thereby, as low as one seventh of the intended value, which led to a large yield displacement and, therefore, the BRB's could not dissipate seismic input energy as desired within the range of anticipated displacements. (2) Although the strengthened model did not behave as desired, great enhancement in earthquake resistance was achieved through an approximate 50% increase in the lateral resistance of the wall, due to the axial constraint by the peripheral BRB frames. Finally, (3) whereas in the original model, base torsion was resisted by both the inner core walls and the peripheral frames, the strengthened model resisted most of the base torsion with the peripheral frames, after yielding of the inner core walls, and represented dual values of torsion stiffness, depending on the yielding of core walls.

A Study on the Lateral Flow in Soft Soils subjected to Unsymmetrical Surcharges (편재하중을 받는 연약지반의 측방유동에 관한 연구)

  • 안종필
    • The Journal of Engineering Geology
    • /
    • v.3 no.2
    • /
    • pp.177-190
    • /
    • 1993
  • When soft soils are effected by unsymmetrical surcharge due to embankement and abutements of a bridge, large plastic sheraring deformations such as settlements, lateral displacements, upheavals and sliding shearing failure in the soils occurred and they have often damaged considerabily to the soils and structure. This study examines the existing theoretical background for the behavior of the displacement of soils by unsymmetrical surcharge on the soft soils and compares the analytical results to the actual measurements performed through the model test. The procedures of model test are that a model stock device is made and soft soils are filled in a container which fixes the soils. Then the displacements observed when surcharge load increa ses by regular interval at undrainage condition. It analyzes the relation of soil characteristics to displacement, critical surcharge and ultimate bearing capadty, condition of plastic flow and lateral flow pressure, comparing them with the existing theories. Understanding the causes of lateral displacement in soft soils due to unsymmetrical surchages will prevent a damage in advance.

  • PDF