• Title/Summary/Keyword: Large Diameter Steel Pipe

Search Result 49, Processing Time 0.028 seconds

Dynamic Behavior of Large Diameter steel Pipe Piles during driving (대구경 강관말뚝의 항타시 동적 거동)

  • 이영남;이종섭
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.4
    • /
    • pp.141-148
    • /
    • 2000
  • For the construction of 4.8km long Multi-Purpose Jamuna Bridge in Bangladesh, 2 or 3 large diameter open-ended steel pipe piles were used for the foundation of piers. A total of 123 piles were driven for 50 piers and 2 test piles from the river bed through the normally-consolidated upper sand layer and rested n top of gravel layer. Two types of piles, having 3.15 or 2.50m diameter and variable wall thickness in the range of 40 to 60mm, were driven to the depths of 69 to 74m with the rake of 6:1 by connecting 2 or 3 pieces of short piles. Dynamic pile tests were performed on 24 selected piles during pile driving and soil plug length inside the pile was also measured after driving of each short section.These piles were plugged with soil to, though slightly affected by pile diameters, about 75% of total length of pile driven. Active plug at the tip of pile contributed substantial amount of inner skin friction to the total capacity. Piles soon after driving showed a skin-friction dominant pile behaviour, tat is, 90% of total capacity being developed by skin resistance. Quakes values and Smith damping factors were almost constant regardless of pile diameters. This result reflects the influence of uniform soil condition at the site.

  • PDF

Development of Small Size Coriolis Mass Flowmeter (소형 코리올리 질량 유량계의 개발)

  • Lim Ki-Won;Ji Jueng-Keun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.6 s.249
    • /
    • pp.497-504
    • /
    • 2006
  • A Coriolis mass flowmeter(CMF), which has U-Shaped unique measurins tube was developed fo. direct mass flow measurement. In order to convert the time difference between two measuring tubes motion into mass flowrate and flow quantity, a signal processing circuit, as a part of CMF, was also developed. The CMF was designed as the 15 mm nominal diameter of pipe connection and the 8 mm stainless steel(sus 316) pipe was used for measuring tube. To maximize the flow signal(time difference) from the measuring tubes, the natural frequency of measuring tube was adjusted as 220 Hz, which is same as the frequency of exciter. The maximum displacement at the end of the measuring tube was measured as 0.05 mm and the maximum time difference between two measuring tubes was observed as $20{\mu}s$, which was proper for discrimination and measuring range of CMF. The developed CMF was tested against the gravimetric flowmeter calibrator in the range of 3 kg/min and 30 kg/min. The results showed that the CMF has good linearity and repeatability in the tested flow range. Large size of CMF base on the current study experience will be developed.

Numerical analysis for deformation characteristics under the freezing and bursting of Al pipe (알루미늄 관의 동파 거동특성에 관한 수치적 연구)

  • Choi, Seung-Hyun;Lee, Dong-Won;Ko, Young-Bae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.8
    • /
    • pp.4763-4768
    • /
    • 2014
  • Recently, aluminum pipes have been used instead of steel pipes for open and shut machines in vinyl housing because of its corrosion-resistance and light weight. In particular, the light weight is very useful for fitting and removal by human resources. On the other hand, an aluminum pipe is weak in winter because aluminum has a larger thermal expansion coefficient than steel. This study examined the freezing and bursting of aluminum pipes by numerical analysis. The mechanical-thermal deformation characteristics were analyzed under the condition of ice volumetric expansion in aluminum pipes reaching 50%. From numerical analysis, large stresses above the yield stress occurred in aluminum pipe after ice expanded in the net diameter immediately. In addition, the freezing and bursting of aluminum pipes was predicted around an ice volumetric expansion of 6 - 7% because the thickness of the aluminum pipe reached an aluminum elongation ratio of 17%. Therefore, it is recommended that aluminum pipes be sealed perfectly to prevent water flow in the pipe. These results suggest that it is very difficult to prevent freezing and bursting of aluminum pipes by water freezing in the pipe.

NEW EVALUATION METHODS FOR RADIAL UNIFORMITY IN NEUTRON TRANSMUTATION DOPING

  • Kim, Hak-Sung;Lim, Jae-Yong;Pyeon, Cheol-Ho;Misawa, Tsuyoshi;Shiroya, Seiji;Park, Sang-Jun;Kim, Myong-Seop;Oh, Soo-Youl;Jun, Byung-Jin
    • Nuclear Engineering and Technology
    • /
    • v.42 no.4
    • /
    • pp.442-449
    • /
    • 2010
  • Recently, the neutron irradiation for large diameter silicon (Si)-ingots of more than 8" diameter is requested to satisfy the demand for the neutron transmutation doping silicon (NTD-Si). By increasing the Si-ingot diameter, the radial non-uniformity becomes larger due to the neutron attenuation effect, which results in a limit of the feasible diameter of the Si-ingot. The current evaluation method has a certain limit to precisely evaluate the radial uniformity of Si-ingot because the current evaluation method does not consider the effect of the Si-ingot diameter on the radial uniformity. The objective of this study is to propose a new evaluation method of radial uniformity by improving the conventional evaluation approach. To precisely predict the radial uniformity of a Si-ingot with large diameter, numerical verification is conducted through comparison with the measured data and introducing the new evaluation method. A new concept of a gradient is introduced as an alternative approach of radial uniformity evaluation instead of the radial resistivity gradient (RRG) interpretation. Using the new concept of gradient, the normalized reaction rate gradient (NRG) and the surface normalized reaction rate gradient (SNRG) are described. By introducing NRG, the radial uniformity can be evaluated with one certain standard regardless of the ingot diameter and irradiation condition. Furthermore, by introducing SNRG, the uniformity on the Si-ingot surface, which is ignored by RRG and NRG, can be evaluated successfully. Finally, the radial uniformity flattening methods are installed by the stainless steel thermal neutron filter and additional Si-pipe to reduce SNRG.

Risk Of Buildings Damage Due To Subsidence During Tunnelling Under The Buildings In Sand-Gravel Layer (빌딩하부 모래자갈층에서 터널시공 중 발생한 지표침하에 의한 빌딩의 손상)

  • Kim, Cheehwan
    • Tunnel and Underground Space
    • /
    • v.25 no.4
    • /
    • pp.383-396
    • /
    • 2015
  • It is analyzed the risk of building damage due to ground surface subsidence occurred during constructing a tunnel below buildings in sand-gravel layer. The overburden and the thickness of sand-gravel layer is about 20m and the width and the height of the tunnel are 12m and 8.6m, respectively. The tunnel is pre-reinforced by umbrella method with three rows of long steel pipes and grouting. Surface subsidence is measured at 36 points surrounding buildings and measured data are used to calculate optimized three dimensional subsidence surface. Depending on the building location, deflection ratio and horizontal strain are calculated to evaluate the risk of building damage. No damage occurs at the buildings because of both the small deflection ratios involved 1~4mm subsidence and compressive horizontal strains.

Structural Stability Analysis of One-Touch Insertion Type Pipe Joint for Refrigerant (냉매용 원터치 삽입식 파이프 조인트의 안전성 구조해석)

  • Kim, Eun-young;Park, Dong-sam
    • Journal of the Society of Disaster Information
    • /
    • v.18 no.3
    • /
    • pp.542-549
    • /
    • 2022
  • Purpose: Pipes are widely used as applied devices in many industrial fields such as machinery, electronics, electricity, and plants, and are also widely used in safety-related fields such as firefighting and chemistry. With the diversification of products, the importance of technology in the piping field is also increasing. In particular, when changing the existing copper pipe to stainless steel, it is necessary to evaluate safety and flow characteristics through structural analysis or flow analysis. Method: This study investigated the structural stability of the 6.35 and 15.88 socket models, which are integrated insert type connectors developed by a company, using FEM. For structural analysis, HyperMesh as pre-processor, HYPER VIEW as post-processor, and LS-DYNA as solver were used. Result: In the case of 6.35 socket, the maximum stresses at hook, holder and hinge were 95.02MPa, 19.59MPa and 44.01MPa, respectively, and in case of 15.88 socket, it was 127.7 MPa, 40.09MPa and 45.23MPa, respectively. Conclusion: Comparing the stress distribution of the two socket models, the stress in the 15.88 socket, which has a relatively large outer diameter, appears to be large overall, but it is significantly lower than the yield stress of each material, indicating that there is no problem in structural safety in both models.

A Study on the Load Bearing Characteristics Depending on Pile Construction Methods and Pile Load Test Methods Based on Case Analyses (사례분석에 기초한 말뚝시공법 및 재하시험방법에 따른 하중지지특성에 관한 연구)

  • Hong, Seok-Woo;Choi, Yong-Kyu
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.4
    • /
    • pp.5-21
    • /
    • 2012
  • In our country, in the case of traditional design of pile foundations, only a design depending on end bearing has been performed. However, through the load transfer measurement data that have been carried out for in-situ piles, it was known that skin frictional force was mobilized greatly. In this study, through the analysis of the load transfer test cases of driven steel pipe piles and large-diameter drilled shafts, load bearing aspects of pile foundation depending on pile construction methods and pile load test methods were established. The average sharing ratios of skin frictional force were independent of pile types, pile load test methods, relative pile lengths, pile diameters and soil types. Because the average sharing ratios were over 50%, the case pile foundations mostly behaved as a friction pile and the extremely partial case pile foundation behaved as a combined load bearing pile.

Skin Friction Mobilized on Pack Micropiles Subjected to Uplift Force (인발력을 받는 팩마이크로파일의 주면마찰력)

  • Hong, Won-Pyo;Cho, Sam-Deok;Choi, Chang-Ho;Lee, Choong-Min
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.6
    • /
    • pp.19-29
    • /
    • 2012
  • Pack micropiles were recently developed to improve pile capacity of general micropiles. Pack micropiles were made by warping thread bar or steel pipe of general micropile by geotexlile pack and grouting inside the pack with pressure. According to the pressure, the boring hole could be enlarged. A series of pile uplift tests were performed on three micropiles. Two out of the three piles were the pack micropiles and the other was the general micropile, in which a thread bar was used in the boring hole. According to the pressure applied to the pack micropiles, the diameter of boring hole was enlarged from 152 mm to 220 mm. Unit skin friction mobilized on side surfaces of micropiles increased with displacement of pile head and reached on a constant value, which represents that the relative displacement between piles (or thread bar) and soils was reached on critical state. And the uplift resistance of pack micropile was higher than that of general micropile. Two reasons can be considered: One is that the frictional surface increases due to enlarging diameter of boring holes and the other is that the unit skin friction could increase due to compressing effect of surrounding soils by soil displacement as much as the enlarging volume of boring hole. The compression effect appeared at deeper layer rather than surface layer. The unit skin friction mobilized on micropiles with small diameter was higher than the ones on large bored piles.

A study on the characteristics of tunnel deformation and support system according to tunnel portal reinforcement method (터널 갱구부 보강방법에 따른 터널 변형 및 지보재 응력특성에 관한 연구)

  • Moon, Kyoung-Sun;Seo, Yoon-Sic;Kang, Si-On;Kim, Sang-Hwan
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.3
    • /
    • pp.625-639
    • /
    • 2018
  • This study is about the reinforcing type of reinforcement method which is reinforced in tunnel portal of tunnel with bad ground condition. Generally, it is known that the horizontal reinforcement method is more effective than the conventional reinforcement method. However, as a limitation of the tunnel construction technology, it is being constructed by the superposition reinforcement method. In recent years, high-strength large-diameter steel pipes and horizontally oriented longitudes (L = 30.0~50.0 m) construction technology have been developed. Therefore, it is required to study reinforcement method of tunnel portal reinforcement method. Therefore, 3-D numerical analysis (Midas GTS NX 3D) was performed by setting the reinforcement method (No reinforcement type, overlap reinforcement type and horizontal reinforcement type) and ground condition as parameters. As a result, it was considered that the reinforcement effect was the largest as the horizontal reinforcement type of the reinforcement method was the smallest in the displacement and the support material stress. Based on the results of the numerical analysis, horizontal steel pipe grouting was applied to the actual tunnel site. The displacement of the tunnel portal and the stress of the support material occurred within the allowable values and were considered to ensure sufficient stability.