• Title/Summary/Keyword: Large Container Ship

Search Result 160, Processing Time 0.024 seconds

Development of Preliminary Design Model for Ultra-Large Container Ships by Genetic Algorithm

  • Han, Song-I;Jung, Ho-Seok;Cho, Yong-Jin
    • International Journal of Ocean System Engineering
    • /
    • v.2 no.4
    • /
    • pp.233-238
    • /
    • 2012
  • In this study, we carried out a precedent investigation for an ultra-large container ship, which is expected to be a higher value-added vessel. We studied a preliminary optimized design technique for estimating the principal dimensions of an ultra-large container ship. Above all, we have developed optimized dimension estimation models to reduce the building costs and weight, using previous container ships in shipbuilding yards. We also applied a generalized estimation model to estimate the shipping service costs. A Genetic Algorithm, which utilized the RFR (required freight rate) of a container ship as a fitness value, was used in the optimization technique. We could handle uncertainties in the shipping service environment using a Monte-Carlo simulation. We used several processes to verify the estimated dimensions of an ultra-large container ship. We roughly determined the general arrangement of an ultra-large container ship up to 1500 TEU, the capacity check of loading containers, the weight estimation, and so on. Through these processes, we evaluated the possibility for the practical application of the preliminary design model.

Economic evaluation for the re-arrangement of accommodation house in ultra large container ship (초대형 컨테이너선의 거주구역 재배치에 대한 경제성 평가)

  • Im Nam-kyun;Choi Kyong-Soon
    • Journal of Navigation and Port Research
    • /
    • v.29 no.6 s.102
    • /
    • pp.529-536
    • /
    • 2005
  • Recently the building of ultra large container ship are discussed among ship building companies and ship operating company who have a tendency to pursue the advantage of large scale of economy. These tendency will be continued for the time being, if ship-building skill and economical efficiency are available. As the enlargement of container ship size becomes hot issues in ship-building markets, the needs for re-arrangement of accommodation house in large container ship are proposed carefully in some researches. This study examined economical efficiency of re-arrangement of accommodation house in ultra large container ship. The separation between accommodation and engine room is proposed through out drawing works in initial design stage and we examined the merits and demerits of the separation in the view of economical efficiency. The RFR(Required Freight Rate) is considered as the objective function to evaluate the re-designed vessel. The economical benefits are analyzed in the view of ship operator and shipyard respectively.

Study on the Maneuvering Characteristics of a Container Ship with Twin Skegs (쌍축 컨테이너선의 조종성능 특성 연구)

  • Kim, Yeon-Gyu;Kim, Sun-Young;Kim, Hyoung-Tae;Yu, Byeong-Seok;Lee, Suk-Won
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.43 no.1 s.145
    • /
    • pp.15-21
    • /
    • 2006
  • Recently, the attention to large container ships whose size is greater than 10,000 TEU container ship has been increased due to their increasing demand. The large container ship has twin skegs because of the engine capacity and large beam-draft ratio. In this paper, the maneuvering characteristics of a container ship with twin skegs were investigated through 4DOF(four degree of freedom) HPMM(Horizontal Planar Motion Mechanism) test and computer simulation. A mathematical model for maneuvering motion with 4DOF of twin skegs system was established to include effects of roll motion on the maneuvering motion. And to obtain roll-coupling hydrodynamic coefficients of a container ship, 4DOF HPMM system of MOERI which has a roll moment measurement system was used. HPMM tests were carried out for a 12,000 TEU class container ship with twin skegs at scantling load condition. Using the hydrodynamic coefficients obtained, simulations were made to predict the maneuvering motion. Rudder forces of twin-rudders were measured at the angles of drift and rudder. The neutral rudder angles with drift angles of ship was quite different with those of single skeg ship. So other treatment of flow straightening coefficient $\gamma_R$ was used and the simulation results was compared with general simulation result. The treatment of experimental result at static drift and rudder test was very important to predict the maneuverability of a container ship with twin skegs.

A Study on Statistical Methods for the Light Weight Estimation of Ultra Large Container Ships (초대형 컨테이너선의 경하중량 추정을 위한 통계적 방법 연구)

  • Cho, Yong-Jin
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.3
    • /
    • pp.14-19
    • /
    • 2009
  • The present study developed a model to estimate the light weight of an ultra-large container ship. The weight estimation model utilized container ship data obtained from shipyards and the subdivided this weight data into appropriate weight groups. Parameters potentially affecting the group weight were selected and expanded based on experience for weight estimation, and a correlation analysis was performed by the SPSS program to determine the key parameters characterizing the group weight. A weight estimation model applying the multi-regression analysis was proposed to assess the weight of an ultra-large container ship at the preliminary design stage, and the results obtained by the suggested method showed good agreement with the shipyard data.

Forecasting of Port Productivity to Response Very Large Container Ship (초대형 컨테이너선 기항에 대응하는 항만생산성 예측)

  • Choi Yong-Seok;Ha Tae-Young
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2005.10a
    • /
    • pp.319-325
    • /
    • 2005
  • The objective of this paper is to forecast the port productivity of container terminal to response very large container ship. In general, the productivity of container terminal is evaluated by productivity of stevedoring system including container cranes, yard cranes, and yard tractors. Therefore, we analyzed the current productivity of container crane as port productivity in Pusan ports and forecast net productivity and gross productivity of container cranes to handle the containers cf very large container ship. In order to improve the productivity, we summarize alternatives of stevedoring system and operation system.

  • PDF

Fatigue Assessment of Very Large Container Ships Considering Springing Effect Based on Stochastic Approach

  • Jung, Byoung-Hoon;Ahn, In-Gyu;Seo, Sun-Kee;Kim, Beom-Il
    • Journal of Ocean Engineering and Technology
    • /
    • v.34 no.2
    • /
    • pp.120-127
    • /
    • 2020
  • Evaluation of fatigue strength considering the springing effect of very large container ships is crucial in the design stage. In this study, we established a fatigue strength evaluation method considering a linear springing component in the frequency domain. Based on a three-dimensional global model, a fluid-structure interaction analysis was performed and the modal superposition method was applied to determine the hot spot stress at the hatch corner of very large container ships. Fatigue damage was directly estimated using the stress transfer function with a linear springing response. Furthermore, we proposed a new methodology to apply the springing effect to fatigue damage using hull girder loads. Subsequently, we estimated the fatigue damage contribution due to linear springing components along the ship length. Finally, we discussed the practical application of the proposed methods.

Impact of the Thruster Jet Flow of Ultra-large Container Ships on the Stability of Quay Walls

  • Hwang, Taegeon;Yeom, Gyeong-Seon;Seo, Minjang;Lee, Changmin;Lee, Woo-Dong
    • Journal of Ocean Engineering and Technology
    • /
    • v.35 no.6
    • /
    • pp.403-413
    • /
    • 2021
  • As the size of ships increases, the size and output power of their thrusters also increase. When a large ship berths or unberths, the jet flow produced from its thruster has an adverse effect on the stability of quay walls. In this study, we conducted a numerical analysis to examine the impact of the thruster jet flow of a 30,000 TEU container ship, which is expected to be built in the near future, on the stability of a quay wall. In the numerical simulation, we used the fluid-structure interaction analysis technique of LS-DYNA, which is calculated by the overlapping capability using an arbitrary Lagrangian Eulerian formulation and Euler-Lagrange coupling algorithm with an explicit finite element method. As the ship approached the quay wall and the vertical position of the thruster approached the mound of the quay wall, the jet flow directly affected the foot-protection blocks and armor stones. The movement and separation of the foot-protection blocks and armor stones were confirmed in the area affected directly by the thruster jet flow of the container ship. Therefore, the thruster jet flows of ultra-large ships must be considered when planning and designing ports. In addition, the stability of existing port structures must be evaluated.

Hydroelastic response of 19,000 TEU class ultra large container ship with novel mobile deckhouse for maximizing cargo capacity

  • Im, Hong-Il;Vladimir, Nikola;Malenica, Sime;Cho, Dae-Seung
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.9 no.3
    • /
    • pp.339-349
    • /
    • 2017
  • This paper is related to structural design evaluation of 19,000 TEU ultra large container ship, dealing with hydroelastic response, i.e. springing and whipping. It illustrates application of direct calculation tools and methodologies to both fatigue and ultimate strength assessment, simultaneously taking into account ship motions and her elastic deformations. Methodology for springing and whipping assessment within so called WhiSp notation is elaborated in details, and in order to evaluate innovative container ship design with increased loading capacity, a series of independent hydroelastic computations for container ship with mobile deckhouse and conventional one are performed with the same calculation setup. Fully coupled 3D FEM - 3D BEM model is applied, while the ultimate bending capacity of hull girder is determined by means of MARS software. Beside comparative analysis of representative quantities for considered ships, relative influence of hydroelasticity on ship response is addressed.

Model based Simulation of Container Loading/Unloading

  • Lee, Soon-Sup
    • International Journal of Ocean System Engineering
    • /
    • v.2 no.3
    • /
    • pp.170-175
    • /
    • 2012
  • Currently, most logistics use containers. The construction of new port and high speed medium size container ship for the transportation of merchandise have become very important. The problem of ship stability is also important because of its direct influence on the loss of human life, ships, and merchandise. The stability of a container ship during its operation is not a large problem because it is well considered in the design process. However, the assessment of ship stability during container loading/unloading in port still depends on the expertise of experienced personnel. In this paper, a model based simulation system is introduced, which is able to assess ship stability during container loading/unloading, using ENVISION, a general purpose simulation system.

Numerical Analysis of Added Resistances of a Large Container Ship in WavesNumerical Analysis of Added Resistances of a Large Container Ship in Waves

  • Lee, Jae-Hoon;Kim, Beom-Soo;Kim, Yonghwan
    • Journal of Advanced Research in Ocean Engineering
    • /
    • v.3 no.2
    • /
    • pp.83-101
    • /
    • 2017
  • In this study, the added resistances of the large container ship in head and oblique seas are evaluated using a time-domain Rankine panel method. The mean forces and moments are computed by the near-field method, namely, the integration of the second-order pressure directly on the ship surface. Furthermore, a weakly nonlinear approach in which the nonlinear restoring and Froude-Krylov forces on the exact wetted surface of a ship are included in order to examine the effects of amplitudes of waves on ship motions and added resistances. The computation results for various advance speeds and heading angles are validated by comparing with the experimental data, and the validation shows reasonable consistency. Nevertheless, there exist discrepancies between the numerical and experimental results, especially for a shorter wave length, a higher advance speed, and stern quartering seas. Therefore, the accuracies of the linear and weakly nonlinear methods in the evaluation of the mean drift forces and moments are also discussed considering the characteristics of the hull such as the small incline angle of the non-wall-sided stern and the fine geometry around the high-nose bulbous bow.