• Title/Summary/Keyword: Large Anchor

Search Result 134, Processing Time 0.024 seconds

Center point prediction using Gaussian elliptic and size component regression using small solution space for object detection

  • Yuantian Xia;Shuhan Lu;Longhe Wang;Lin Li
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.8
    • /
    • pp.1976-1995
    • /
    • 2023
  • The anchor-free object detector CenterNet regards the object as a center point and predicts it based on the Gaussian circle region. For each object's center point, CenterNet directly regresses the width and height of the objects and finally gets the boundary range of the objects. However, the critical range of the object's center point can not be accurately limited by using the Gaussian circle region to constrain the prediction region, resulting in many low-quality centers' predicted values. In addition, because of the large difference between the width and height of different objects, directly regressing the width and height will make the model difficult to converge and lose the intrinsic relationship between them, thereby reducing the stability and consistency of accuracy. For these problems, we proposed a center point prediction method based on the Gaussian elliptic region and a size component regression method based on the small solution space. First, we constructed a Gaussian ellipse region that can accurately predict the object's center point. Second, we recode the width and height of the objects, which significantly reduces the regression solution space and improves the convergence speed of the model. Finally, we jointly decode the predicted components, enhancing the internal relationship between the size components and improving the accuracy consistency. Experiments show that when using CenterNet as the improved baseline and Hourglass-104 as the backbone, on the MS COCO dataset, our improved model achieved 44.7%, which is 2.6% higher than the baseline.

Anchoring Cadmium Chalcogenide Quantum Dots (QDs) onto Stable Oxide Semiconductors for QD Sensitized Solar Cells

  • Lee, Hyo-Joong;Kim, Dae-Young;Yoo, Jung-Suk;Bang, Ji-Won;Kim, Sung-Jee;Park, Su-Moon
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.6
    • /
    • pp.953-958
    • /
    • 2007
  • Anchoring quantum dots (QDs) onto thermodynamically stable, large band gap oxide semiconductors is a very important strategy to enhance their quantum yields for solar energy conversion in both visible and near-IR regions. We describe a general procedure for anchoring a few chalcogenide QDs onto the titanium oxide layer. To anchor the colloidal QDs onto a mesoporous TiO2 layer, linker molecules containing both carboxylate and thiol functional groups were initially attached to TiO2 layers and subsequently used to capture dispersed QDs with the thiol group. Employing the procedure, we exploited cadmium selenide (CdSe) and cadmium telluride (CdTe) quantum dots (QDs) as inorganic sensitizers for a large band gap TiO2 layer of dye-sensitized solar cells (DSSCs). Their attachment was confirmed by naked eyes, absorption spectra, and photovoltaic effects. A few QD-TiO2 systems thus obtained have been characterized for photoelectrochemical solar energy conversion.

Coupled CFD-FEM simulation of hydrodynamic responses of a CALM buoy

  • Gu, Haoyuan;Chen, Hamn-Ching;Zhao, Linyue
    • Ocean Systems Engineering
    • /
    • v.9 no.1
    • /
    • pp.21-42
    • /
    • 2019
  • In this paper, the Finite-Analytic Navier-Stokes (FANS) code is coupled with an in-house finite-element code to study the dynamic interaction between a floating buoy and its mooring system. Hydrodynamic loads on the buoy are predicted with the FANS module, in which Large Eddy Simulation (LES) is used as the turbulence model. The mooring lines are modeled based on a slender body theory. Their dynamic responses are simulated with a nonlinear finite element module, MOORING3D. The two modules are coupled by transferring the forces and displacements of the buoy and its mooring system at their connections through an interface module. A free-decay model test was used to calibrate the coupled method. In addition, to investigate the capability of the present coupled method, numerical simulations of two degree-of-freedom vortex-induced motion of a CALM buoy in uniform currents were performed. With the study it can be verified that accurate predictions of the motion responses and tension responses of the CALM buoy system can be made with the coupling CFD-FEM method.

Study on collapse mechanism and treatment measures of portal slope of a high-speed railway tunnel

  • Guoping Hu;Yingzhi Xia;Lianggen Zhong;Xiaoxue Ruan;Hui Li
    • Geomechanics and Engineering
    • /
    • v.32 no.1
    • /
    • pp.111-123
    • /
    • 2023
  • The slope of an open cut tunnel is located above the exit of the Leijia tunnel on the Changgan high-speed railway. During the excavation of the open cut tunnel foundation pit, the slope slipped twice, a large landslide of 92500 m3 formed. The landslide body and unstable slope body not only caused the foundation pit of the open cut tunnel to be buried and the anchor piles to be damaged but also directly threatened the operational safety of the later high-speed railway. Therefore, to study the stability change in the slope of the open cut tunnel under heavy rain and excavation conditions, a 3D numerical calculation model of the slope is carried out by Midas GTS software, the deformation mechanism is analyzed, anti-sliding measures are proposed, and the effectiveness of the anti-sliding measures is analyzed according to the field monitoring results. The results show that when rainfall occurs, rainwater collects in the open cut tunnel area, resulting in a transient saturation zone on the slope on the right side of the open cut tunnel, which reduces the shear strength of the slope soil; the excavation at the slope toe reduces the anti-sliding capacity of the slope toe. Under the combined action of excavation and rainfall, when the soil above the top of the anchor pile is excavated, two potential sliding surfaces are bounded by the top of the excavation area, and the shear outlet is located at the top of the anchor pile. After the excavation of the open cut tunnel, the potential sliding surface is mainly concentrated at the lower part of the downhill area, and the shear outlet moves down to the bottom of the open cut tunnel. Based on the deformation characteristics and the failure mechanism of the landslides, comprehensive control measures, including interim emergency mitigation measures and long-term mitigation measures, are proposed. The field monitoring results further verify the accuracy of the anti-sliding mechanism analysis and the effectiveness of anti-sliding measures.

Seismic Behavior of RC Beam-Column Exterior Joints with Unbonded Tendons and High Strength Concrete (비부착 강연선과 고강도 콘크리트를 적용한 철근콘크리트 외부 접합부의 내진 거동)

  • Kwon, Byung Un;Kang, Thomas H.-K.
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.19 no.6
    • /
    • pp.283-292
    • /
    • 2015
  • In the moment frame subjected to earthquake loads, beam-column joint is structurally important for ductile behavior of a system. ACI Committee 352 proposed guidelines for designing beam-column joint details. The guidelines, however, need to be updated because of the lack of data regarding several factors that may improve the performance of joints. The purpose of this study is to investigate the seismic performance of reinforced concrete exterior joints with high-strength materials and unbonded tendons. Three specimens with different joint shear demand-to-strength ratios were constructed and tested, where headed bars were used to anchor the beam bars into the joint. All specimens showed satisfactory seismic behavior including moment strength of 1.3 times the nominal moment, ductile performance (ductility factor = at least 2.4), and sufficiently large dissipated energy.

Numerical Modeling of Pollutants using Local Wind Model in Gwangyang Bay, Korea (국지순환풍 모델을 이용한 광양만권 대기오염물질의 수치모델링)

  • 이상득
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.19 no.1
    • /
    • pp.13-23
    • /
    • 2003
  • A local wind model and a three dimensional local environmental model including advection, diffusion, deposition. and photochemical reactions were performed at Gwangyang Bay, Korea, to predict air flow and air pollutants concentrations. A large grid was used, and nesting method was employed for small grid calculation. From the meterological module simulation, we were able to reproduce local wind characteristics such as sea/land winds and mountain/valley winds simulation at Gwangyang Bay. In addition, the concentration module showed high concentration regions at Yosu industrial complex, Gwangyang steel company. and Container anchor. It was also seen that air pollutants were dispersed by sea/land winds. A comparison between the measurement and the prediction of sulfur dioxide and nitric oxide, which are relatively low-reacted pollutants, was performed. However, the measured nitrogen dioxide and ozone concentrations were higher than the simulated ones. Particularly, ozone concentration between 8 a..m. and 8 p.m. agreed well, but the measured ozone during the rest of time were generally higher.

A Case study on the construction badness for slope reinforcement (사면보강공법 시공불량사례 검토를 통한 개선방안 연구)

  • Kwon, Sung-Ju;Kim, Yong-Soo;Chang, Bum-Soo;Nah, Kwang-Hee
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.739-744
    • /
    • 2005
  • The construction road work are increasing now. And the domestic slope construction are steadily increased and changed the complicated and large-scale. Therefore ground reinforcement for slope stabilization has been increasingly used during the past few decades with a wide variety of techniques including soil nailing, rock bolt, anchor and different types. But in some cases which applied slope reinforcement construction by badness or mistake. So this paper is the study of construction badness for slope reinforcement.

  • PDF

Localization Algorithm without Range Information in Wireless Sensor Networks

  • Lee, Byoung-Hwa;Lee, Woo-Yong;Eom, Doo-Seop
    • Journal of IKEEE
    • /
    • v.11 no.4
    • /
    • pp.297-306
    • /
    • 2007
  • A sensor network is composed of a large number of sensor nodes that are densely deployed in a field. Each sensor performs a sensing task for detection specific events. After detecting this event, location information of the sensor node is very important. Range-based scheme of the proposed approaches typically achieve high accuracy on either node-to-node distances or angles, but this scheme have a drawback because all sensor nodes have the special hardware. On the other hand, range-free scheme provides economic advantage because of no needed hardware even if that leads to coarse positioning accuracy. In this paper, we propose a range-free localization algorithm without range information in wireless sensor networks. This is a range-free approach and uses a small number of anchor nodes and known sensor nodes. This paper develops a localization mechanism using the geometry conjecture (perpendicular bisector of a chord). The conjecture states that a perpendicular bisector of a chord passes through the center of the circle.

  • PDF

Efficient Detection of Scene Change and Anchorperson Frame in News Video (뉴스 비디오에서의 효율적인 장면 전환과 앵커 화면 검출)

  • Kang, Hyunchul;Lee, Jin-Sung;Lee, Wanjoo
    • Journal of KIISE:Software and Applications
    • /
    • v.32 no.12
    • /
    • pp.1157-1163
    • /
    • 2005
  • In this paper, an efficient and fast method to segment a video in the MPEG(motion picture expert group) video stream is proposed. For the real time processing of large amount of broadcasting data, we use DC images of I-frames in an MPEG compressed video with minimal decoding. Using the modified histogram comparison which counts on not only luminance but also chrominance information, the scene change detection was performed in the fast and accurate way Also, to discriminate anchorperson frame from non-anchor frame, a neural network method was introduced.

Analysis of the Earth Resistance for the Tower Footing of T/L (송전선로 철탑기초의 접지저항 해석)

  • Lee, H.G.;Ha, T.H.;Bae, J.H.;Kim, D.K.
    • Proceedings of the KIEE Conference
    • /
    • 2001.11b
    • /
    • pp.344-346
    • /
    • 2001
  • The sharing of common corridors by electric power transmission lines and pipelines is becoming more common place. However, such corridor sharing can result in undesired coupling of electromagnetic energy from the power lines to the near facilities. During a fault on any of the transmission lines, energization of the earth by supporting structures near the fault can result in large voltages appearing locally between the earth and the steel wall of any nearby pipeline. This paper presents the outline of the tower footings for the transmission lines having been used in KEPCO and analyzes the earth resistance for operation method of the tower footing, that is contact presence for the anchor and reinforcing rob of the tower and foundation presence of the underground wiring.

  • PDF