• Title/Summary/Keyword: Larch

Search Result 343, Processing Time 0.02 seconds

The Separation, Purification and Utilization of Wood Main Components by Steam Explosion in Low Pressure (I) -Low Pressure Steaming Explosion and Separation of Wood Main Components- (저압(低壓) 폭쇄처리(爆碎處理)에 의한 목재주성분(木材主成分)의 분리(分離)·정제(精製) 및 이용(利用)(I) -저압폭쇄처리(低壓爆碎處理) 및 목재주성분(木材主成分)의 분리(分離)-)

  • Eom, Chan-Ho;Eom, Tae-Jin;Lee, Jong-Yoon
    • Journal of the Korean Wood Science and Technology
    • /
    • v.21 no.3
    • /
    • pp.30-36
    • /
    • 1993
  • Wood chips of oak (Quercus mongolica) and larch (Larix leptolepis) were treated with a relatively low pressure steam(10~20 kg/$cm^2$) for 10~20 min (first-stage),and then increased pressure up to 30kg/$cm^2$ for 30 second (second-stage), and steam pressure was released intentionally to air. Main components of exploded wood were separated with 1% NaOH and hot water-methanol. In this work, the more effective low pressure explosion condition and separation method of wood main component were investigated. The results can be summarized as follows; 1. The yields of exploded wood were generally decreased with increasing steam pressure and reaction time. 2. The proper condition of steam explosion in low pressure for the separation of wood main components was 15kg/$cm^2$-10 min, in oak wood and 20kg/$cm^2$-10 min., then 30kg/$cm^2$-0.5 min, in larch wood. 3. The 23% of elude hemicellulose was obtained from the exploded oak wood which was treated with optimal condition. 4. In the case of hot water-methanol extraction, the ratio of delignification was 14~23% in the exploded larch wood and 42~55% in the exploded oak wood. 5. The methanol was more effective than 1% sodium hydroxide solution for extraction of lignin from exploded wood.

  • PDF

Change in Weight, Moisture Content, and Dimension at the Early Stage of Adsorption-desorption of Polyethylene Glycol-treated Woods (PEG처리재의 초기 흡·탈습과정에서 중량, 함수율 및 치수 변화)

  • Kwon, Gu-Joong;Kim, Nam-Hun;Chun, Kun-Woo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.37 no.6
    • /
    • pp.497-504
    • /
    • 2009
  • The characteristic changes in weight, moisture content, and dimension at the early adsorptiondesorption stage of PEG-treated Korean pine (Pinus koraiensis), Japanese larch (Larix kaempferi), mongolian oak (Quercus mongolica) and sargent cherry (Prunus sargentii) woods were investigated. The wood samples were treated with PEG 1000, 2000 and 4000, and conditioned at the relative 98%, 65% and 20% for humidities of one week. The weight of Korean pine, Japanese larch and sargent cherry woods treated with PEG 1000 and 2000 during the adsorption-desorption was significantly changed, but mongolian oak was slightly changed. Moisture content was highly Moisture content was highly fluctuated by the change of relative humidity in the three species except oak wood. Although the weight of PEG-treated wood; however, changes in dimension could be prevented by PEG treatment in all species tested.

Lateral Resistance of CLT Wall Panels Composed of Square Timber Larch Core and Plywood Cross Bands

  • JANG, Sang Sik;LEE, Hyoung Woo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.47 no.5
    • /
    • pp.547-556
    • /
    • 2019
  • Thinned, small larch logs have small diameters and no value-added final use, except as wood chips, pallets, or fuel wood, which are products with very low economic value; however, their mechanical strength is suitable for structural applications. In this study, small larch logs were sawed, dried, and cut into square timbers (with a $90mm{\times}90mm$ cross section) that were laterally glued to form core panels used to manufacture cross-laminated timber (CLT) wall panels. The surface and back of these core panels were covered with 12-mm-thick structural plywood panels, used as cross bands to obtain three-ply CLT wall panels. This attachment procedure was conducted in two different ways: gluing and pressing (CGCLT) or gluing and nailing (NGCLT). The size of the as-manufactured CLT panels was $1,220mm{\times}2,440mm$, the same as that of the plywood panels. The final wall panels were tested under lateral shear force in accordance with KS F 2154. As the lateral load resistance test required $2,440mm{\times}2,440mm$ specimens, two CLT wall panels had to be attached in parallel. In addition, the final CLT panels had tongued and grooved edges to allow parallel joints between adjacent pieces. For comparison, conventional light-frame timber shear walls and midply wall systems were also tested under the same conditions. Shear walls with edge nail spacing of 150 mm and 100 mm, the midply wall system, and the fabricated CGCLT and NGCLT wall panels exhibited maximum lateral resistances of 6.1 kN/m (100%), 9.7 kN/m (158%), 16.9 kN/m (274%), 29.6 kN/m (482%), and 35.8 kN/m (582%), respectively.

Effect of Organic Solvent Extractives on Korean Softwoods Classification Using Near-infrared Spectroscopy

  • Yeon, Seungheon;Park, Se-Yeong;Kim, Jong-Hwa;Kim, Jong-Chan;Yang, Sang-Yun;Yeo, Hwanmyeong;Kwon, Ohkyung;Choi, In-Gyu
    • Journal of the Korean Wood Science and Technology
    • /
    • v.47 no.4
    • /
    • pp.509-518
    • /
    • 2019
  • This study analyzed the effect of organic solvent extractives on the classification of wood species via near-infrared spectroscopy (NIR). In our previous research, five species of Korean softwood were classified into three groups (i.e., Cryptomeria japonica (cedar)/Chamaecyparis obtuse (cypress), Pinus densiflora (red pine)/Pinus koraiensis (Korean pine), and Larix kaempferi (Larch)) using an NIR-based principal component analysis method. Similar tendencies of extractive distribution were observed among the three groups in that study. Therefore, in this study, we qualitatively analyzed extractives extracted by an organic solvent and analyzed the NIR spectra in terms of the extractives' chemical structure and band assignment to determine their effect in more detail. Cedar/cypress showed a similar NIR spectra patterns by removing the extractives at 1695, 1724, and 2291 nm. D-pinitol, which was detected in cedar, contributed to that wavelength. Red pine/Korean pine showed spectra changes at 1616, 1695, 1681, 1705, 1724, 1731, 1765, 1780, and 2300 nm. Diterpenoids and fatty acid, which have a carboxylic group and an aliphatic double bond, contributed to that wavelength. Larch showed a catechin peak in gas chromatography and mass spectroscopy analysis, but it exhibited very small NIR spectra changes. The aromatic bond in larch seemed to have low sensitivity because of the 1st overtone of the O-H bond of the sawdust cellulose. The three groups sorted via NIR spectroscopy in the previous research showed quite different compositions of extractives, in accordance with the NIR band assignment. Thus, organic solvent extractives are expected to affect the classification of wood species using NIR spectroscopy.

Physical Properties of Larch(Larix kaemferi Carr.) Treated by High Temperature Steaming - Effect of high temperature steaming on shrinkages of larch block - (고온수증기처리에 의한 낙엽송재의 물성(제2보) - 고온수증기처리에 의한 낙엽송재의 수축율 변화 -)

  • Kim, Jung-Hwan;Lee, Weon-Hee
    • Journal of the Korean Wood Science and Technology
    • /
    • v.30 no.2
    • /
    • pp.102-107
    • /
    • 2002
  • This study deals with a physical properties of Larch(Larix kaemferi Carr.) treated at temperatures above 100℃. Treatment conditions of this experiment were operated at regular intervals of 20℃ at temperature up to 180℃ for 10, 30, 60 and 90 minutes by using the bomb, respectively. The results of this study were as follows : 1) The density was decreased with increasing the times and temperatures of steaming. 2) It was considered that the steaming treated specimen's higher shrinkage compared to control was due to change of composition and structure in cell wall. 3) The warpage of half edge grain specimen was decreased by high temperature steaming.

Charring Properties of Glued Laminated Timber Columns using Domestic Larch Exposed to High Temperatures (고온에 노출된 국내산 낙엽송 구조용 집성재 기둥의 탄화 특성)

  • An, Jae-Hong;Choi, Yun-Jeong;Kim, Se-Jong
    • Journal of the Korea Institute of Building Construction
    • /
    • v.23 no.1
    • /
    • pp.23-33
    • /
    • 2023
  • It is widely known that the level of fire resistance of wooden structure is determined by a charring rate or charring depth, and these are adopted for fire design. In this study, specimens of domestic larch column with a lamination wooden type were prepared and the fire resistance properties such as the charring depth, load ratio and the specific charring rate suggested by EN Code investigated. Test results showed that as expected, the weakest part was the corner of the column, so that the charring depth of the corner was deeper than the other parts of the column. For the load ratio less than 0.9, it had little effect on the charring depth.

Tensile Performance of Machine-Cut Dovetail Joint with Larch Glulam (낙엽송집성재를 이용한 기계프리커트 주먹장접합부의 인장성능)

  • Park, Joo-Saeng;Hwang, Kweon-Hwan;Park, Moon-Jae;Shim, Kug-Bo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.38 no.3
    • /
    • pp.199-204
    • /
    • 2010
  • Members used for the Korean traditional joints have been processed by handicraft, especially with domestic red pine species. Dovetail joint is most commonly used in woodworking joinery and traditional horizontal and vertical connections. It is able to be processed much easier to cut by handicraft and machines. However, although it is processed straight forwards, it requires a high degree of accuracy to ensure a snug fit. Also, tenons and mortises must fit together with no gap between them so that the joint interlocks tightly. A few scientific studies on the dovetail joints have been conducted so far. For the effective applications of traditional joints and domestic plantation wood species, dovetail joints were assembled by larch glulam members processed by machine pre-cut. To identify the tensile properties of through dovetail joints, larch glulam with 150 150mm in cross section were prepared. Furthermore, various geometric parameters of dovetai joints such as width, length, and tenon angle, were surveyed. The ends in the mortise was cracked mainly at a low strength level in the control specimens without reinforcements. The maximum tensile strengths of reinforced specimens considering real connections such as capital joint and headpiece on a column, increasedby handicraft, especially with domestic red pine species. Dovetail joint is most commonly used in woodworking joinery and traditional horizontal and vertical connections. It is able to be processed much easier to cut by handicraft and machines. However, although it is processed straight forwards, it requires a high degree of accuracy to ensure a snug fit. Also, tenons and mortises must fit together with no gap between them so that the joint interlocks tightly. A few scientific studies on the dovetail joints have been conducted so far. For the effective applications of traditional joints and domestic plantation wood species, dovetail joints were assembled by larch glulam members processed by machine pre-cut. To identify the tensile properties of through dovetail joints, larch glulam with 150 150mm in cross section were prepared. Furthermore, various geometric parameters of dovetai joints such as width, length, and tenon angle, were surveyed. The ends in the mortise was cracked mainly at a low strength level in the control specimens without reinforcements. The maximum tensile strengths of reinforced specimens considering real connections such as capital joint and headpiece on a column, increased by two times with shear failures on the tenon than the control specimens. The maximum tensile strength was obtained in the specimen of 25 degrees, and no difference was observed in the changes of neck widths.

Changes in Soil Physiochemcial Properties Over 11 Years in Larix kaempferi Stands Planted in Larix kaempferi and Pinus rigida Clear-Cut Sites (낙엽송과 리기다소나무 벌채지에 조성된 낙엽송 임분의 11년간 토양 물리·화학적 특성 변화)

  • Nam Jin Noh;Seung-hyun Han;Sang-tae Lee;Min Seok Cho
    • Journal of Korean Society of Forest Science
    • /
    • v.112 no.4
    • /
    • pp.502-514
    • /
    • 2023
  • This study was conducted to understand the long-term changes in soil physiochemical properties and seedling growth in Larix kaempferi (larch) stands planted in clear-cut larch and Pinus rigida (pine) forest soils over an 11-year period after reforestation. Two-year-old bare-root larch seedlings were planted in 2009-2010 at a density of 3,000 seedlings ha-1 in clear-cut areas that harvested larch (Chuncheon and Gimcheon) and pine (Wonju and Gapyeong) stands. We analyzed the physiochemical properties of the mineral soils sampled at 0-20 cm soil depths in the planting year, and the 3rd, 7thand 11th years after planting, and we measured seedling height and root collar diameter in those years. We found significant differences in soil silt and clay content, total carbon and nitrogen concentration, available phosphorus, and cation exchangeable capacity between the two stands; however, seedling growth did not differ. The mineral soil was more fertile in Gimcheon than in the other plantations, while early seedling growth was greatest in Gapyeong. The seedling height and diameter at 11 years after planting were largest in Wonju (1,028 tree ha-1) and Chuncheon (1,359 tree ha-1) due to decreases in stand density after tending the young trees. The soil properties in all plantations were similar 11 years after larch planting. In particular, the high sand content and high available phosphorus levels (caused by soil disturbance during clear-cutting and planting) showed marked decreases, potentially due to soil organic matter input and nutrient uptake, respectively. Thus, early reforestation after clear-cutting could limit nutrient leaching and contribute to soil stabilization. These results provide useful information for nutrient management of larch plantations.

Seasonal Changes in the Nutrient Content of Soil and Soil Water Affected by Urea Application in Forest (요소(尿素)를 시용(施用)한 삼림토양(森林土壤)과 토양수중(土壤水中) 양분함량(養分含量)의 계절적(季節的) 변화(變化))

  • Jin, Hyun-O;Joo, Yeong-Teuk;Son, Yo-Hwan;Oh, Jong-Min;Chung, Doug-Young
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.32 no.2
    • /
    • pp.115-122
    • /
    • 1999
  • Investigation of nutrient movement in soil and soil water is necessary to clarify water purification functions and nutrient circulation within a forest ecosystem. In this study, seasonal changes in the nutrient content of soil and soil water was investigated in Korean white pine(Pinus koraiensis) and Japanese larch(Larix leptolepis) forest applied urea ($150kg\;ha^{-1}$). Soil pH was decreased rapidly in Japanese larch plot for a long period. On the other hand, soil pH was increased slightly in Korean white pine plot. T-C and T-N content were increased in both plots. In Japanes larch plot, exchangeable Ca and Mg contents were decreased remarkably than those in korean white pine plot while exchangeable K was increased rapidly after application. The effect of urea application on exchangeable K was not obvious compared to other cations. The pH, Ca, $NH_4-N$, $NO_3-N$, $SO_4-S$ and Cl concentrations in the sampled soil water at surface soil were increased only temporarily after fertilization, with the only exception of the decrease in pH of the soil water in Japanese larch plot. On the other hand, the peak value of K, Mg concentrations in the soil water was shown between 2 and 5 months after fertilization. The concentrations of Ca, $NO_3-N$, $SO_4-S$ and Cl returned to the values found before fertilization after about 1 month. Those of K, Mg, and $NO_3-N$ after 6-12 months.

  • PDF

Evaluation of Cell-Wall Microstructure and Anti-Swelling Effectiveness of Heat-Treated Larch Wood (낙엽송 열처리재의 세포벽 미세구조 및 항팽윤효율 평가)

  • PARK, Yonggun;JEON, Woo-Seok;YOON, Sae-Min;LEE, Hyun Mi;HWANG, Won-Joung
    • Journal of the Korean Wood Science and Technology
    • /
    • v.48 no.6
    • /
    • pp.780-790
    • /
    • 2020
  • In this study, the cell-wall microstructure and anti-swelling effectiveness (ASE) of heat-treated larch wood were evaluated and the correlation between them was analyzed. For this purpose, some larch lumbers were heat-treated for 12, 18, and 24 hours at temperatures of 190℃ and 220℃. By observing the scanning electron microscopy cross-sectional image of the heat-treated larch, it was confirmed that the shape of heat-treated wood cell changed, the cut-section of the wood cell wall was rough, and the intercellular space has become wide as the intercellular bonds had broken because of heat-treatment. In addition, the evaluation of the swelling for each treatment condition revealed that, as the heat-treatment temperature and duration increased, the amount of absorbed water and swelling decreased and the ASE increased. The decrease in the amount of absorbed water is thought to be affected by the chemical change in the cell wall by heat-treatment. On the contrary, the decrease in the swelling and the increase in the ASE are thought to be due to a combination of chemical changes and physical changes such as structural changes in the cell wall.