• Title/Summary/Keyword: Laplace distribution

Search Result 138, Processing Time 0.024 seconds

NHPP Software Reliability Model based on Generalized Gamma Distribution (일반화 감마 분포를 이용한 NHPP 소프트웨어 신뢰도 모형에 관한 연구)

  • Kim, Hee-Cheul
    • Journal of the Korea Society of Computer and Information
    • /
    • v.10 no.6 s.38
    • /
    • pp.27-36
    • /
    • 2005
  • Finite failure NHPP models presented in the literature exhibit either constant, monotonic increasing or monotonic decreasing failure occurrence rates Per fault. This Paper Proposes reliability model using the generalized gamma distribution, which can capture the monotonic increasing(or monotonic decreasing) nature of the failure occurrence rate per fault. Equations to estimate the parameters of the generalized gamma finite failure NHPP model based on failure data collected in the form of interfailure times are developed. For the sake of proposing shape parameter of the generalized gamma distribution, used to the special pattern. Data set, where the underlying failure process could not be adequately described by the knowing models, which motivated the development of the gamma or Weibull model. Analysis of failure data set for the generalized gamma modell, using arithmetic and Laplace trend tests . goodness-of-fit test, bias tests is presented.

  • PDF

A Study on the Attributes of Software Reliability Cost Model with Shape Parameter Change of Type-2 Gumbel Life Distribution (Type-2 Gumbel 수명분포의 형상모수 변화에 따른 소프트웨어 신뢰성 비용모형의 속성에 관한 연구)

  • Yang, Tae-Jin
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.12 no.3
    • /
    • pp.211-217
    • /
    • 2019
  • In this study, we compare and analyze the attributes of the software development cost model according to the shape parameters change of the Type-2 Gumbel lifetime distribution using the NHPP model. In order to analyze the software failure phenomena, the parametric estimation is applied to the maximum likelihood estimation method, and the nonlinear equations are calculated using the bisection method. As a result, when the attributes of the cost curves according to the change of shape parameters are compared, it is found that the larger the number of shape parameters, the lower the software development cost and the faster the release time. Through this study, it is expected that it will be helpful for the software developers to search for the development cost according to the software shape parameters change, and also to provide the necessary information for the attributes of the software development cost.

The study for NHPP Software Reliability Model based on Kappa(2) distribution (Kappa(2) NHPP에 의한 소프트웨어 신뢰성 모형에 관한 연구)

  • Kim, Hee-Cheul
    • Journal of the Korea Computer Industry Society
    • /
    • v.6 no.5
    • /
    • pp.689-696
    • /
    • 2005
  • Finite failure NHPP models presented in the literature exhibit either constant, monotonic increasing or monotonic decreasing failure occurrence rates per fault. In this paper, Goel-Okumoto and Yamada-Ohba-Osaki model was reviewed, proposes the Kappa(2) reliability model, which can capture the nomotonic decreasing nature of the failure occurrence rate per fault. Algorithm to estimate the parameters used to maximum likelihood estimator and bisection method, model selection based on sum of the squared errors and Kolmogorov distance, for the sake of efficient model, was employed. Analysis of failure using real data set, SYS2(Allen P.Nikora and Michael R.Lyu), for the sake of proposing two parameter of the Kappa distribution, was employed. This analysis of failure data compared with the Kappa model and the existing model using arithmetic and Laplace trend tests, bias tests is presented.

  • PDF

The Study for NHPP Software Reliability Model based on Chi-Square Distribution (카이제곱 NHPP에 의한 소프트웨어 신뢰성 모형에 관한 연구)

  • Kim, Hee-Cheul
    • Journal of the Korea Society of Computer and Information
    • /
    • v.11 no.1 s.39
    • /
    • pp.45-53
    • /
    • 2006
  • Finite failure NHPP models presented in the literature exhibit either constant, monotonic increasing or monotonic decreasing failure occurrence rates per fault. In this paper, Goel-Okumoto and Yamada-Ohba-Osaki model was reviewed, proposes the $x^2$ reliability model, which can capture the increasing nature of the failure occurrence rate per fault. Algorithm to estimate the parameters used to maximum likelihood estimator and bisection method, model selection based on SSE, AIC statistics and Kolmogorov distance, for the sake of efficient model, was employed. Analysis of failure using real data set, SYS2(Allen P.Nikora and Michael R.Lyu), for the sake of proposing shape parameter of the $x^2$ distribution using the degree of freedom, was employed. This analysis of failure data compared with the $x^2$ model and the existing model using arithmetic and Laplace trend tests, Kolmogorov test is presented.

  • PDF

A Comparative Study on the Infinite NHPP Software Reliability Model Following Chi-Square Distribution with Lifetime Distribution Dependent on Degrees of Freedom (수명분포가 자유도에 의존한 카이제곱분포를 따르는 무한고장 NHPP 소프트웨어 신뢰성 모형에 관한 비교연구)

  • Kim, Hee-Cheul;Kim, Jae-Wook
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.10 no.5
    • /
    • pp.372-379
    • /
    • 2017
  • Software reliability factor during the software development process is elementary. Case of the infinite failure NHPP for identifying software failure, the occurrence rates per fault (hazard function) have the characteristic point that is constant, increases and decreases. In this paper, we propose a reliability model using the chi - square distribution which depends on the degree of freedom that represents the application efficiency of software reliability. Algorithm to estimate the parameters used to the maximum likelihood estimator and bisection method, a model selection based on the mean square error (MSE) and coefficient of determination($R^2$), for the sake of the efficient model, were employed. For the reliability model using the proposed degree of freedom of the chi - square distribution, the failure analysis using the actual failure interval data was applied. Fault data analysis is compared with the intensity function using the degree of freedom of the chi - square distribution. For the insurance about the reliability of a data, the Laplace trend test was employed. In this study, the chi-square distribution model depends on the degree of freedom, is also efficient about reliability because have the coefficient of determination is 90% or more, in the ground of the basic model, can used as a applied model. From this paper, the software development designer must be applied life distribution by the applied basic knowledge of the software to confirm failure modes which may be applied.

Quantification of nonlinear seismic response of rectangular liquid tank

  • Nayak, Santosh Kumar;Biswal, Kishore Chandra
    • Structural Engineering and Mechanics
    • /
    • v.47 no.5
    • /
    • pp.599-622
    • /
    • 2013
  • Seismic response of two dimensional liquid tanks is numerically simulated using fully nonlinear velocity potential theory. Galerkin-weighted-residual based finite element method is used for solving the governing Laplace equation with fully nonlinear free surface boundary conditions and also for velocity recovery. Based on mixed Eulerian-Lagrangian (MEL) method, fourth order explicit Runge-Kutta scheme is used for time integration of free surface boundary conditions. A cubic-spline fitted regridding technique is used at every time step to eliminate possible numerical instabilities on account of Lagrangian node induced mesh distortion. An artificial surface damping term is used which mimics the viscosity induced damping and brings in numerical stability. Four earthquake motions have been suitably selected to study the effect of frequency content on the dynamic response of tank-liquid system. The nonlinear seismic response vis-a-vis linear response of rectangular liquid tank has been studied. The impulsive and convective components of hydrodynamic forces, e.g., base shear, overturning base moment and pressure distribution on tank-wall are quantified. It is observed that the convective response of tank-liquid system is very much sensitive to the frequency content of the ground motion. Such sensitivity is more pronounced in shallow tanks.

Delay analysis for a discretionary-priority packet-switching system

  • Hong, Sung-Jo;Takagi, Hideaki
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1995.04a
    • /
    • pp.729-738
    • /
    • 1995
  • We consider a priority-based packet-switching system with three phases of the packet transmission time. Each packet belongs to one of several priority classes, and the packets of each class arrive at a switch in a Poison process. The switch transmits queued packets on a priority basis with three phases of preemption mechanism. Namely, the transmission time of each packet consists of a preemptive-repeat part for the header, a preemptive-resume part for the information field, and a nonpreemptive part for the trailer. By an exact analysis of the associated queueing model, we obtain the Laplace-Stieltjes transform of the distribution function for the delay, i.e., the time from arrival to transmission completion, of a packet for each class. We derive a set of equations that calculates the mean response time for each class recursively. Based on this result, we plot the numerical values of the mean response times for several parameter settings. The probability generating function and the mean for the number of packets of each class present in the system at an arbitrary time are also given.

  • PDF

A Comparative Study on Software Reliability Model for NHPP Intensity Function Following a Decreasing Pattern (강도함수가 감소패턴을 따르는 NHPP 소프트웨어 신뢰모형에 관한 비교 연구)

  • Kim, Hee Cheul;Kim, Jong Buam;Moon, Song Chul
    • Journal of Information Technology Applications and Management
    • /
    • v.23 no.4
    • /
    • pp.117-125
    • /
    • 2016
  • Software reliability in the software development process is an important issue. In infinite failure non-homogeneous Poisson process software reliability models, the failure occurrence rates per fault. can be presented constant, monotonic increasing or monotonic decreasing pattern. In this paper, the reliability software cost model considering decreasing intensity function was studied in the software product testing process. The decreasing intensity function that can be widely used in the field of reliability using power law process, log-linear processes and Musal-Okumoto process were studied and the parameter estimation method was used for maximum likelihood estimation. In this paper, from the software model analysis, we was compared by applying a software failure interval failure data considering the decreasing intensity function The decreasing intensity function model is also efficient in terms of reliability in the arena of the conservative model can be used as an alternating model can be established. From this paper, the software developers have to consider life distribution by preceding information of the software to classify failure modes which can be gifted to support.

Free Vibration Characteristics of a Composite Beam with Multiple Transverse Open Cracks (다중 크랙이 있는 복합재료 보의 자유진동 특성)

  • 하태완;송오섭
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 1999.11a
    • /
    • pp.5-14
    • /
    • 1999
  • Free vibration characteristics of a cantilevered laminated composite beam with multiple non-propagating transverse open cracks are investigated. In the present analysis a special ply-angle distribution referred to as asymmetric stiffness configuration inducing the elastic coupling between chord-wise bending and extension is considered. The multiple open cracks are modelled as equivalent rotational springs whose spring constants are calculated based on the fracture mechanics of composite material structures. Governing equations of a composite beam with open cracks are derived via Hamilton's Principle and Timoshenko beam theory encompassing transverse shear and rotary inertia effect is adopted. The effects of various parameters such as the ply angle, fiber volume fraction, crack numbers, crack positions and crack depthes on the free vibration characteristics of the beam with multiple cracks are highlighted. The numerical results show that the existence of the multiple cracks in an anisotropic composite beam affects the free vibration characteristics in a more complex fashion compared with the beam with a single crack.

  • PDF

The Analytical Derivation of the Fractal Advection-Diffusion Equation for Modeling Solute Transport in Rivers (하천 오염물질의 모의를 위한 프랙탈 이송확산방정식의 해석적 유도)

  • Kim, Sang-Dan;Song, Mee-Young
    • Journal of Korea Water Resources Association
    • /
    • v.37 no.11
    • /
    • pp.889-896
    • /
    • 2004
  • The fractal advection-diffusion equation (ADE) is a generalization of the classical AdE in which the second-order derivative is replaced with a fractal order derivative. While the fractal ADE have been analyzed with a stochastic process In the Fourier and Laplace space so far, in this study a fractal ADE for describing solute transport in rivers is derived with a finite difference scheme in the real space. This derivation with a finite difference scheme gives the hint how the fractal derivative order and fractal diffusion coefficient can be estimated physically In contrast to the classical ADE, the fractal ADE is expected to be able to provide solutions that resemble the highly skewed and heavy-tailed time-concentration distribution curves of contaminant plumes observed in rivers.