• Title/Summary/Keyword: Lap Shear Strength

Search Result 146, Processing Time 0.028 seconds

Effects of Reaction pH and Hardener Type on Reactivity, Properties, and Performance of Urea-Formaldehyde (UF) Resin

  • Park, Byung-Dae;Kim, Yoon Soo;So, Won Tek;Lim, Kie Pyo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.30 no.3
    • /
    • pp.1-11
    • /
    • 2002
  • This study was conducted to investigate the effects of reaction pH conditions and hardener types on the reactivity, chemical structure and adhesion performance of UF resins. Three different reaction pH conditions, such as traditional alkaline-acid (7.5 → 4.5), weak acid (4.5), and strong acid (1.0), were used to synthesize UF resins which were cured by adding three different hardeners (ammonium chloride, ammonium citrate, and zinc nitrate) to measure adhesion strength. Fourier transform infrared (FT-IR) and carbon-13 nuclear magnetic resonance (13C-NMR) spectroscopies were employed to study chemical structure of the resin prepared under three different reaction pH conditions. Adhesion strength of the resins cured with three different hardeners was determined with lap shear specimens in tension. The gel time of UF resins decreased with an increasing in the amount of both ammonium chloride and ammonium citrate added in the resins. However, the gel time increased for zinc nitrate. Both FT-IR and 13C-NMR spectroscopies showed that the strong reaction pH condition produce uronic structures in UF resin, while both alkaline-acid and weak acid conditions produce quite similar chemical species in the resins. The maximum adhesion strength was occurred with the resin prepared under strong acid pH condition. However, this study indicated that the weak acid reaction condition provide a balance between increasing resin reactivity and improving adhesion strength of UF resin. The measurement of formaldehyde emission from the panels bonded with the UF resins prepared is planned for future work.

Interfacial and Mechanical properties of Different Heat Treated Wood and Evaluation of Bonding Property between Stone and Wood for Rock Bed (열처리 조건에 따른 목재의 계면과 기계적 물성 및 돌침대용 석재/목재간 접착제에 따른 접착력 평가)

  • Kwon, Dong-Jun;Shin, Pyeong-Su;Choi, Jin-Yeong;Moon, Sun-Ok;Park, Joung-Man
    • Journal of Adhesion and Interface
    • /
    • v.16 no.2
    • /
    • pp.69-75
    • /
    • 2015
  • Stone board for the rock bed was needed to reduce weight using thin thickness and reinforced materials. In this work, stone/wood board for rock bed was studied. Stone and wood were attached to reduce total weight of stone for rock bed. For reinforcing wood heat treatment method was used to change surface and mechanical properties. Mechanical strength of heat treated wood increased more than neat condition. The optimum heat treatment condition was set on $100^{\circ}C$ under tensile, flexural loads whereas surface energy was also obtained by contact angle measurement. Optimum adhesive condition was to get the maximum adhesion between stone and wood. Lap shear test was performed for stone/wood board with different adhesives such as amine type epoxy, polyurethane, chloro-rubber and vinyl chloride acetate type. Fracture surface of lap shear test was shown at wood fracture part on stone using amine type epoxy adhesive. It was found that for high adhesion between stone and wood the optimum adhesive was epoxy type for the rock bed.

Evaluations of lap shear and peel strength for epoxy and polyurethane adhesive bonded Triplex sheets at cryogenic temperatures (극저온에서 우레탄과 에폭시 접착제로 접착된 트리플엑스의 전단강도과 박리 강도 평가)

  • Shon, Min-Young
    • Composites Research
    • /
    • v.24 no.3
    • /
    • pp.39-45
    • /
    • 2011
  • Adhesive joints are widely used for structural joining applications in various fields and environmental conditions. Polyurethane (PU) and Epoxy adhesives are now being used for liquefied natural gas (LNG) carriers at cryogenic temperatures. This paper presents a comprehensive evaluation of epoxy and PU adhesive bonds between Triplex sheets at normal and cryogenic temperatures. The most significant result of this study is that for all adhesives tested, there is a significant decrease in peel strength at cryogenic temperatures. However, the reasons for the decrease in peel strength for epoxy and PU adhesives differ. Consequently, PU adhesives can be considered better suited for use in applications requiring high bonding performance at cryogenic conditions, such as in LNG carriers.

Bond strength characterization and estimation of steel fibre reinforced polymer - concrete composites

  • Jahangir, Hashem;Eidgahee, Danial Rezazadeh;Esfahani, Mohammad Reza
    • Steel and Composite Structures
    • /
    • v.44 no.6
    • /
    • pp.803-816
    • /
    • 2022
  • Composite materials are effective in forming externally bonded reinforcements which find applications related to existing structures repair, attributed to their high strength-to-weight ratio and ease of installation. Among various composites, fibre reinforced polymers (FRP) have somewhat been largely accepted as a commonly utilized composite for such purposes. It is only recently that steel fibres have been considered as additional members of the FRP fibre family, intuitively termed as steel reinforced polymer (SRP). Owing to its low cost and permissibility of fibre bending at sharp corners, SRP is rapidly becoming a viable contender to other FRP systems. This paper investigates the bond behaviour of SRP-concrete joints with different bonded lengths (50, 75, 100, 150 and 300 mm) and widths (15, 30, 40, 50, and 75 mm) using single-lap shear tests. The experimental specimens contain SRP strips with a fixed density of steel fibres (0.472 cords/mm) bonded to the face of concrete prisms. The load responses were obtained and compared in terms of corresponding load and slip boundaries of the constant region and the peak loads. The failure modes of SRP composites are discussed, and the range of effective bonded length is evaluated herein. In the end, a new analytical model was proposed to estimate the SRP-concrete bond strength using a genetic algorithm, which outperforms 22 existing FRP-concrete bond strength models.

A Study on Improvement of Thermal and Adhesion Properties of Stone/Wood Composites for Stone Bed using CNT-epoxy Adhesive (CNT/Epoxy 접착제를 이용한 돌침대용 석재/목재 복합재의 열적특성 및 접착특성 개선 연구)

  • Kim, Jong-Hyun;Shin, Pyeong-Su;Kwon, Dong-Jun;Moon, Sun-Ok;Park, Joung-Man
    • Composites Research
    • /
    • v.29 no.5
    • /
    • pp.276-281
    • /
    • 2016
  • Improvement of the thermal and adhesion properties of stone/wood composites was studied. Tensile test was performed for wood and stone to know the basic mechanical properties. Real-time temperature of stone and wood was measured when stone and wood was heated. To compare thermal transfer properties of stone/wood composites, two types of specimens were tested: one was stone upper whereas another was wood upper. Real time temperature measurement and lap shear test were performed to know thermal and adhesion properties by using CNT-epoxy adhesive in which CNT was dispersed in epoxy adhesive uniformly. The thermal transfer property was better for the wood upper case than stone upper case. Adding CNT improved the heat transfer as well as mechanical properties including lap shear strength.

Improved Adhesion Strength of the Gradient Zn-Mg Coating on TRIP Steel (TRIP강에서 박막 깊이의 Mg 함량의 변화에 따른 밀착력에 관한 연구)

  • Song, Myeon-Gyu;Kim, Hoe-Geun;Lee, Sang-Yul
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2018.06a
    • /
    • pp.136-136
    • /
    • 2018
  • 듀얼 페이즈(DP) 강철과 같은 고강도강(HSS), TRIP강, TWIP강은 무게를 줄이고 자동차의 안전을 향상시키기 위해서 자동차 산업에서 광범위하게 쓰이고 있다. HSS강의 내부식성을 향상시키기 위해서, 향상된 박막 재료와 기존의 아연도금 공정을 대체하는 공정 방법이 필요하다. Zn-Mg 박막은 강의 부식 방지에 대한 강력한 후보이며, 물리적 기상 증착 공정(PVD)은 강의 Zn-Mg 박막의 증착을 위한 유망한 공정이다. 그러나 이전 연구에서 보고 된 바와 같이 Zn-Mg 박막은 Zn-Mg 박막의 높은 취성으로 인하여 Zn 박막에 비하여 접착력이 매우 불충분하였다. 따라서 본 연구에서는 Zn-Mg 박막의 첩착력을 향상시키기 위해 TRIP강 기판 위에 증발 증착법을 활용하여 Zn-Mg/Zn 이중층 박막을 합성하고 진공에서 열처리를 실시하여 박막의 깊이에 따른 Mg의 함량 변화를 유도하였다. Zn-Mg/Zn 박막 합성 시 EMH-PVD를 활용하여 증착하였으며, Zn 중간층을 모재와 Zn-Mg 층 사이에 증착하고 진공중에서 열처리를 실시하여 박막 내에서 Mg 함량의 기울기 변화가 박막의 밀착력에 주는 영향을 평가하였다. 증착된 박막은 FE-SEM을 통하여 미세조직과 박막의 두께를 분석하였고 line-EDS를 통하여 깊이에 따른 Zn와 Mg의 변화를 분석하였으며 XRD를 사용하여 합금상을 분석하였다. Lap shear test를 활용하여 박막의 밀착력을 정략적으로 분석하였다. FE-SEM 및 EDS 분석 결과 Zn-Mg/Zn 박막을 진공에서 열처리를 실시한 후 FE-SEM으로 분석한 결과 미세조직의 큰 차이는 보이지 않았으나, line-EDS 결과 Mg이 확산되는 것을 확인 할 수 있었다. XRD 분석 결과 확산한 Mg에 의해서 Zn상은 감소하고 $Mg_2Zn_{11}$, $MgZn_2$와 같은 합금상은 증가하는 것을 확인하였다. Lap shear test 결과 $200^{\circ}C$에서 열처리한 Zn-15wt.%Mg/Zn 박막의 경우 밀착력이 19 MPa로 열처리를 하지 않았을 경우(11 MPa)보다 향상되는 것을 확인하였다. 이러한 결과는 통하여 Zn-Mg 박막의 두께의 Mg의 함량 변화에 의해서 박막의 밀착력이 변화되는 것을 알 수 있다.

  • PDF

Characteristics of Friction Stir Lap Weldment according to Joining Parameter in 5052 Aluminium Alloy (5052 알루미늄 합금에서 접합변수에 따른 겹치기 마찰교반접합부의 특성)

  • Ko, Young-Bong;Park, Kyeung-Chae
    • Journal of the Korean institute of surface engineering
    • /
    • v.45 no.5
    • /
    • pp.181-187
    • /
    • 2012
  • The Friction Stir Welding (FSW) has mainly been used for making butt joints in Al alloys. The development of Friction Stir Lap Welding (FSLW) would expand the number of applications. In this study, microstructures and mechanical properties of FSLW in A5052 alloy were investigated under varying rotating speed and probe length. Investigating the characteristics as FSLWed conditions were as below ; Failure Maximum load by shear fracture was increased proportional to the width of joint area, which was increased by input heat, stirring intensity in the case of 2.3 mm probe length. Tensile fracture occurred, and maximum load was determined due to side worm hole of joint area and softening of microstructure in the case of 3.0 mm probe length. In the case of 3.7 mm probe length, material hook and bottom worm hole were appeared at the end interface of joint area. The most sound FSLW condition with no defects was 3.0 mm probe length and 1500 rpm-100 mm/min. No defects were showed in 1500 rpm-100 mm/min and 1800 rpm-100 mm/min, but Vickers microhardness distribution in TMAZ/HAZ which was fracture zone was lower in 1800 rpm-100 mm/min than in 1500 rpm-100 mm/min. In this condition highest tensile strength, 215 MPa (allowable rate 78% of joint efficient) was obtained.

Destructive testing of adhesively bonded joints under static tensile loading

  • Ochsner, A.;Gegner, J.
    • Journal of Adhesion and Interface
    • /
    • v.5 no.2
    • /
    • pp.22-36
    • /
    • 2004
  • Several in-situ testing methods of adhesively bonded joints under static short-time tensile loading are critically analyzed in terms of experimental procedure and data evaluation. Due to its rather homogeneous stress state across the glue line, the tensile-shear test with thick single-lap specimens, according to ISO 11003-2, has become the most important test process for the determination of realistic materials parameters. This basic method, which was improved in both, the experimental part by stepped adherends and easily attachable extensometers and the evaluation procedure by numeric substrate deformation correction and test simulation based on the finite element method (FEM), is therefore demonstrated by application to several kinds of adhesives and metallic adherends. Multi-axial load decreases the strength of a joint. This effect, which is illustrated by an experimental comparison, impedes the derivation of realistic mechanical characteristics from measured force-displacement curves. It is shown by numeric modeling that tensile-shear tests with thin plate substrates according to ISO 4587, which are widely used for quick industrial quality assurance, reveal an inhomogeneous stress state, especially because of relatively large adherend deformation. Complete experimental determination of the elastic properties of bonded joints requires independent measurement of at least two characteristics. As the thick-adherend tensile-shear test directly yields the shear modulus, the tensile butt-joint test according to ISO 6922 represents the most obvious complement of the test programme. Thus, validity of analytical correction formulae proposed in literature for the derivation of realistic materials characteristics is verified by numeric simulation. Moreover, the influence of the substrate deformation is examined and a FEM correction method introduced.

  • PDF

The Evaluation of Surface and Adhesive Bonding Properties for Cold Rolled Steel Sheet for Automotive Treated by Ar/O2 Atmospheric Pressure Plasma (대기압 Ar/O2 플라즈마 표면처리된 자동차용 냉연강판의 표면특성 및 접착특성평가)

  • Lee, Chan-Joo;Lee, Sang-Kon;Park, Geun-Hwan;Kim, Byung-Min
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.4
    • /
    • pp.354-361
    • /
    • 2008
  • Cold rolled steel sheet for automotive was treated by Ar/$O_2$ atmospheric pressure plasma to improve the adhesive bonding strength. Through the contact angle test and calculation of surface free energy for cold rolled steel sheet, the changes of surface properties were investigated before and after plasma treatment. The contact angle was decreased and surface free energy was increased after plasma treatment. And the change of surface roughness and morphology were observed by AFM(Atomic Force Microscope). The surface roughness of steel sheet was slightly changed. Based on Taguchi method, single lap shear test was performed to investigate the effect of experimental parameter such as plasma power, treatment time and flow rate of $O_2$ gas. Results shows that the bonding strength of steel sheet treated in Ar/$O_2$ atmospheric pressure plasma was improved about 20% compared with untreated sheet.

Full-Scale Shaker Testing of Non-Ductile RC Frame Structure Retrofitted Using High-Strength Near Surface Mounted Rebars and Carbon FRP Sheets (고강도 표면매립용철근과 탄소섬유시트로 보강된 비연성 철근콘크리트 골조의 실물 진동기 실험)

  • Shin, Jiuk;Jeon, Jong-Su;Wright, Timothy R.
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.23 no.1
    • /
    • pp.43-54
    • /
    • 2019
  • Existing reinforced concrete frame buildings designed for only gravity loads have been seismically vulnerable due to their inadequate column detailing. The seismic vulnerabilities can be mitigated by the application of a column retrofit technique, which combines high-strength near surface mounted bars with a fiber reinforced polymer wrapping system. This study presents the full-scale shaker testing of a non-ductile frame structure retrofitted using the combined retrofit system. The full-scale dynamic testing was performed to measure realistic dynamic responses and to investigate the effectiveness of the retrofit system through the comparison of the measured responses between as-built and retrofitted test frames. Experimental results demonstrated that the retrofit system reduced the dynamic responses without any significant damage on the columns because it improved flexural, shear and lap-splice resisting capacities. In addition, the retrofit system contributed to changing a damage mechanism from a soft-story mechanism (column-sidesway mechanism) to a mixed-damage mechanism, which was commonly found in reinforced concrete buildings with strong-column weak-beam system.