• 제목/요약/키워드: Language Network

검색결과 1,226건 처리시간 0.026초

과거 합격자 시맨틱 데이터베이스를 활용한 디지털 인문학 연구 (Digital Humanities, and Applications of the "Successful Exam Passers List")

  • 이재옥
    • 동양고전연구
    • /
    • 제70호
    • /
    • pp.303-345
    • /
    • 2018
  • 이 논문은 조선시대 과거급제자 명단인 방목의 디지털화 작업이 한 개인의 사회적 배경과 혈통에 대한 정보를 알려주는 것을 뛰어넘어, 양반 사이의 다양한 관계망을 파악하는 자료로서 어떻게 이용할 수 있는지를 보여주는 것이다. 디지털 인문학에서 조선시대 과거 합격자의 명단인 방목은 대단히 흥미로운 자료다. 이 자료를 기반으로 조선시대 사회상을 엿볼 수 있다. 한국학중앙연구원은 방목의 각종 데이터를 XML 문서로 만들어 데이터베이스를 구축 운영하고 있어, 필요한 항목을 추출하고 다양한 통계 자료를 만들 수 있다. 또 방목 데이터와 족보 데이터를 연결한다면 혼인 관계와 지역 연고, 당파 등 한 개인과 지역 사회에 대한 중층적인 스토리텔링을 구현할 수도 있다. 이미 한국학중앙연구원에서는 2005년부터 현재까지 문과방목 무과방목 사마방목 잡과방목의 디지털화를 완료하였다. 이 작업의 결과는 현재 '한국역대인물 종합정보시스템'에서 이용할 수 있다. 조선시대 다양한 과거급제자의 명단을 망라한 이 작업으로 조선시대 지배엘리트로부터 전문직 중인의 명단을 확보할 수 있게 되었다. 그럼에도 아직 이 작업결과를 통해 의미 있는 활용들이 일어나지 못하고 있다. 이 논문은 낱낱이 흩어져 있는 개인 정보들을 디지털 인문학이라는 학문적 접근을 통해 개인의 생애와 그 개인이 몸담은 사회의 심층을 들여다보는 창구로서 어떻게 활용할 수 있는지를 제시하고자 한다. 그래프 데이터베이스에 방목 데이터를 입력하면 급제자가 노드(node)가 되고 각 노드간 친족 관계와 혼인 관계를 시각적으로 살펴 볼 수 있다. 급제자들 상호 간의 인적 관계뿐만 아니라 여기에 족보 데이터를 추가하면 다양한 혼인 관계를 바탕으로 조선시대 문벌 가문의 단초를 한 눈에 알 수 있다.

투자자별 거래정보와 머신러닝을 활용한 투자전략의 성과 (Performance of Investment Strategy using Investor-specific Transaction Information and Machine Learning)

  • 김경목;김선웅;최흥식
    • 지능정보연구
    • /
    • 제27권1호
    • /
    • pp.65-82
    • /
    • 2021
  • 주식시장에 참여하는 투자자들은 크게 외국인투자자, 기관투자자, 그리고 개인투자자로 구분된다. 외국인투자자 같은 전문투자자 집단은 개인투자자 집단과 비교하여 정보력과 자금력에서 우위를 보이고 있으며, 그 결과 시장 참여자들 사이에는 외국인투자자들이 좋은 투자 성과를 보이는 것으로 알려져 있다. 외국인 투자자들은 근래에는 인공지능을 이용한 투자를 많이 하고 있다. 본 연구의 목적은 투자자별 거래량 정보와 머신러닝을 결합하는 투자전략을 제안하고, 실제 주가와 투자자별 거래량 데이터를 이용하여 제안 모형의 포트폴리오 투자 성과를 분석하는 것이다. 일별 투자자별 매수 수량과 매도 수량 정보는 한국거래소에서 공개하고 있는 자료를 활용하였으며, 여기에 인공신경망을 결합하여 최적의 포트폴리오 전략을 도출하고자 하였다. 본 연구에서는 자기 조직화 지도 모형 인공신경망을 이용하여 투자자별 거래량 데이터를 그룹화하고 그룹화한 데이터를 변환하여 오류역전파 모형을 학습하였다. 학습 후 검증 데이터 예측결과로 매월 포트폴리오 구성을 하도록 개발하였다. 성과 분석을 위해 포트폴리오의 벤치마크를 지정하였고 시장 수익률 비교를 위해 KOSPI200, KOSPI 지수 수익률도 구하였다. 포트폴리오의 동일배분 수익률, 복리 수익률, 연평균 수익률, MDD, 표준편차, 샤프지수, 벤치마크로 지정한 시가총액 상위 10종목의 Buy and Hold 수익률 등을 사용하여 성과 분석을 진행하였다. 분석 결과 포트폴리오가 벤치마크 대비 2배 수익률을 올렸으며 시장 수익률보다 좋은 성과를 보였다. MDD와 표준편차는 포트폴리오와 벤치마크가 비슷한 결과로 성과 대비 비교한다면 포트폴리오가 좋은 성과라고 할 수 있다. 샤프지수도 포트폴리오가 벤치마크와 시장 결과보다 좋은 성과를 내었다. 이를 통해 머신러닝과 투자자별 거래정보 분석을 활용한 포트폴리오 구성 프로그램 개발의 방향을 제시하였고 실제 주식 투자를 위한 프로그램 개발에 활용할 수 있음을 보였다.

뇌기반 진화적 과학 교수학습 모형의 개발 (Development of a Model of Brain-based Evolutionary Scientific Teaching for Learning)

  • 임채성
    • 한국과학교육학회지
    • /
    • 제29권8호
    • /
    • pp.990-1010
    • /
    • 2009
  • 이 연구에서는 뇌기반 진화적 교육 원리를 도출하기 위하여, 인간 뇌의 구조적 기능적 특징, 개체간과 개체내에서 일어나는 생물학적 진화, 뇌내에서 일어나는 진화적 과정, 과학 자체와 개별 과학자의 과학적 활동에 내재된 진화적 속성에 관한 연구물을 리뷰하였다. 이렇게 하여 도출된 인간 뇌의 주요 특징과 생성-선택-파지를 핵심 요소로 하는 보편 다윈주의 혹은 보편 선택주의를 토대로, 뇌기반 진화적 과학 교수 학습 모형을 개발하였다. 이 모형은 세 가지 요소와 세 가지 단계 및 평가로 이루어진다. 세 가지 요소는 정의적, 행동적, 인지적 요소이고, 각 요소를 구성하는 세 단계는 다양화 $\rightarrow$ 비교 선택 $\rightarrow$ 확장 적용(ABC-DEF; Affective, Behavioral, Cognitive components - Diversifying$\rightarrow$Emulating, Estimating, Evaluating $\rightarrow$ Furthering steps)이다. 이 모형에서 정의적 요소 (A)는 인간 뇌에서 감성을 관장하는 대뇌변연계에 토대를 두고 자연 사물과 현상에 대한 학습자의 흥미 호기심과 관련된다. 행동적 요소(B)는 시각 정보를 처리하는 후두엽, 언어 정보의 이해.생성과 관련된 측두엽, 감각운동 정보를 처리하는 감각운동령을 수반하고 과학적 활동의 직접 해보기와 관련된다. 인지적 요소(C)는 사고, 계획, 판단, 문제해결과 관련된 전두엽합령에 토대를 둔다. 이 모형은 이러한 측면에서 '뇌기반(brain-based)'이다. 이 모형의 세 가지 각 요소를 구성하는 세 단계에서, 다양화 단계(D)는 각 요소에서 다양한 변이체를 생성하는 과정이고, 가치나 유용성에 비추어 비교.선택하는 단계(E)는 변이체들 중 유용하거나 가치 있는 것을 검증하여 선택하는 과정이며, 확장.적용 단계(F)는 선택된 것을 유사한 상황으로 확장하거나 적용하는 단계이다. 이 모형은 이러한 측면에서 '진화적(evolutionary)'이다. ABC 세 요소에 대해, 과학적 활동에서 감성적 요인이 출발점으로 갖는 중요성과 뇌에서 사고 기능과 관련되는 신피질에 비해 감성을 관장하는 대뇌변연계의 우세한 역할을 반영하여 DARWIN (Driving Affective Realm for Whole Intellectual Network) 접근법을 강조한다. 이 모형은 학교 현장에서 다루는 과학 주제와 학생의 특징에 따라 다양한 형태와 수준으로 융통성 있게 실행될 수 있다.

Design and Implementation of IoT based Low cost, Effective Learning Mechanism for Empowering STEM Education in India

  • Simmi Chawla;Parul Tomar;Sapna Gambhir
    • International Journal of Computer Science & Network Security
    • /
    • 제24권4호
    • /
    • pp.163-169
    • /
    • 2024
  • India is a developing nation and has come with comprehensive way in modernizing its reducing poverty, economy and rising living standards for an outsized fragment of its residents. The STEM (Science, Technology, Engineering, and Mathematics) education plays an important role in it. STEM is an educational curriculum that emphasis on the subjects of "science, technology, engineering, and mathematics". In traditional education scenario, these subjects are taught independently, but according to the educational philosophy of STEM that teaches these subjects together in project-based lessons. STEM helps the students in his holistic development. Youth unemployment is the biggest concern due to lack of adequate skills. There is a huge skill gap behind jobless engineers and the question arises how we can prepare engineers for a better tomorrow? Now a day's Industry 4.0 is a new fourth industrial revolution which is an intelligent networking of machines and processes for industry through ICT. It is based upon the usage of cyber-physical systems and Internet of Things (IoT). Industrial revolution does not influence only production but also educational system as well. IoT in academics is a new revolution to the Internet technology, which introduced "Smartness" in the entire IT infrastructure. To improve socio-economic status of the India students must equipped with 21st century digital skills and Universities, colleges must provide individual learning kits to their students which can help them in enhancing their productivity and learning outcomes. The major goal of this paper is to present a low cost, effective learning mechanism for STEM implementation using Raspberry Pi 3+ model (Single board computer) and Node Red open source visual programming tool which is developed by IBM for wiring hardware devices together. These tools are broadly used to provide hands on experience on IoT fundamentals during teaching and learning. This paper elaborates the appropriateness and the practicality of these concepts via an example by implementing a user interface (UI) and Dashboard in Node-RED where dashboard palette is used for demonstration with switch, slider, gauge and Raspberry pi palette is used to connect with GPIO pins present on Raspberry pi board. An LED light is connected with a GPIO pin as an output pin. In this experiment, it is shown that the Node-Red dashboard is accessing on Raspberry pi and via Smartphone as well. In the final step results are shown in an elaborate manner. Conversely, inadequate Programming skills in students are the biggest challenge because without good programming skills there would be no pioneers in engineering, robotics and other areas. Coding plays an important role to increase the level of knowledge on a wide scale and to encourage the interest of students in coding. Today Python language which is Open source and most demanding languages in the industry in order to know data science and algorithms, understanding computer science would not be possible without science, technology, engineering and math. In this paper a small experiment is also done with an LED light via writing source code in python. These tiny experiments are really helpful to encourage the students and give play way to learn these advance technologies. The cost estimation is presented in tabular form for per learning kit provided to the students for Hands on experiments. Some Popular In addition, some Open source tools for experimenting with IoT Technology are described. Students can enrich their knowledge by doing lots of experiments with these freely available software's and this low cost hardware in labs or learning kits provided to them.

토픽 모델링을 이용한 트위터 이슈 트래킹 시스템 (Twitter Issue Tracking System by Topic Modeling Techniques)

  • 배정환;한남기;송민
    • 지능정보연구
    • /
    • 제20권2호
    • /
    • pp.109-122
    • /
    • 2014
  • 현재 우리는 소셜 네트워크 서비스(Social Network Service, 이하 SNS) 상에서 수많은 데이터를 만들어 내고 있다. 특히, 모바일 기기와 SNS의 결합은 과거와는 비교할 수 없는 대량의 데이터를 생성하면서 사회적으로도 큰 영향을 미치고 있다. 이렇게 방대한 SNS 데이터 안에서 사람들이 많이 이야기하는 이슈를 찾아낼 수 있다면 이 정보는 사회 전반에 걸쳐 새로운 가치 창출을 위한 중요한 원천으로 활용될 수 있다. 본 연구는 이러한 SNS 빅데이터 분석에 대한 요구에 부응하기 위해, 트위터 데이터를 활용하여 트위터 상에서 어떤 이슈가 있었는지 추출하고 이를 웹 상에서 시각화 하는 트위터이슈 트래킹 시스템 TITS(Twitter Issue Tracking System)를 설계하고 구축 하였다. TITS는 1) 일별 순위에 따른 토픽 키워드 집합 제공 2) 토픽의 한달 간 일별 시계열 그래프 시각화 3) 토픽으로서의 중요도를 점수와 빈도수에 따라 Treemap으로 제공 4) 키워드 검색을 통한 키워드의 한달 간 일별 시계열 그래프 시각화의 기능을 갖는다. 본 연구는 SNS 상에서 실시간으로 발생하는 빅데이터를 Open Source인 Hadoop과 MongoDB를 활용하여 분석하였고, 이는 빅데이터의 실시간 처리가 점점 중요해지고 있는 현재 매우 주요한 방법론을 제시한다. 둘째, 문헌정보학 분야뿐만 아니라 다양한 연구 영역에서 사용하고 있는 토픽 모델링 기법을 실제 트위터 데이터에 적용하여 스토리텔링과 시계열 분석 측면에서 유용성을 확인할 수 있었다. 셋째, 연구 실험을 바탕으로 시각화와 웹 시스템 구축을 통해 실제 사용 가능한 시스템으로 구현하였다. 이를 통해 소셜미디어에서 생성되는 사회적 트렌드를 마이닝하여 데이터 분석을 통한 의미 있는 정보를 제공하는 실제적인 방법을 제시할 수 있었다는 점에서 주요한 의의를 갖는다. 본 연구는 JSON(JavaScript Object Notation) 파일 포맷의 1억 5천만개 가량의 2013년 3월 한국어 트위터 데이터를 실험 대상으로 한다.

텍스트마이닝 기법을 활용한 사용후핵연료 건식처리기술 관련 언론 동향 분석 (Analysis of media trends related to spent nuclear fuel treatment technology using text mining techniques)

  • 정지송;김호동
    • 지능정보연구
    • /
    • 제27권2호
    • /
    • pp.33-54
    • /
    • 2021
  • 최근 4차 산업혁명, 코로나로 인한 뉴노멀 시대의 도래 등을 계기로 인공지능, 빅데이터 연구와 같은 언택트 관련 기술의 중요성이 더욱 급상하고 있다. 각 종 연구 분야에서는 이러한 연구 트렌드를 따라가기 위한 융합적 연구가 본격적으로 시행되고 있으나 원자력 분야의 경우 자연어 처리, 텍스트마이닝 분석 등 인공지능 및 빅데이터 관련 기술을 적용한 연구가 많이 수행되지 않았다. 이에 원자력 연구 분야에 데이터 사이언스 분석기술의 적용 가능성을 확인해보고자 본 연구를 수행하였다. 원자로 연료로 사용된 뒤 배출되는 사용후핵연료 인식 동향 파악에 대한 연구는 원자력 산업 정책에 대한 방향을 결정하고 산업정책 변화를 사전에 대응할 수 있다는 측면에서 매우 중요하다. 사용후핵연료 처리기술은 크게 습식 재처리 방식과 건식 재처리 방식으로 나뉘는데, 이 중 환경 친화적이고 핵비확산성 및 경제성이 높은 건식재처리 기술인 '파이로프로세싱'과 그 연계 원자로 '소듐냉각고속로'의 연구개발에 대한 재평가가 현재 지속적으로 검토되고 있다. 따라서 위와 같은 이유로, 본 연구에서는 사용후핵연료 처리기술인 파이로프로세싱에 대한 언론 동향 분석을 진행하였다. 사용후핵연료 처리기술인 '파이로프로세싱' 키워드를 포함하는 네이버 웹 뉴스 기사 전문의 텍스트데이터를 수집하여 기간에 따라 인식변화를 분석하였다. 2016년 발생한 경주 지진, 2017년 새 정부의 에너지 전환정책 시행된 2010년대 중반 시기를 기준으로 전, 후의 동향 분석이 시행되었고, 빈도분석을 바탕으로 한 워드 클라우드 도출, TF-IDF(Term Frequency - Inverse Document Frequency) 도출, 연결정도 중심성 산출 등의 분석방법을 통해 텍스트데이터에 대한 세부적이고 다층적인 분석을 수행하였다. 연구 결과, 2010년대 이전에는 사용후핵연료 처리기술에 대한 사회 언론의 인식이 외교적이고 긍정적이었음을 알 수 있었다. 그러나 시간이 흐름에 따라 '안전(safety)', '재검토(reexamination)', '대책(countermeasure)', '처분(disposal)', '해체(disassemble)' 등의 키워드 출현빈도가 급증하며 사용후핵연료 처리기술 연구에 대한 지속 여부가 사회적으로 진지하게 고려되고 있음을 알 수 있었다. 정치 외교적 기술로 인식되던 사용후핵연료 처리기술이 국내 정책의 변화로 연구 지속 가능성이 모호해짐에 따라 언론 인식도 점차 변화했다는 것을 확인하였다. 이러한 연구 결과를 통해 원자력 분야에서의 사회과학 연구의 지속은 필수불가결함을 알 수 있었고 이에 대한 중요성이 부각되었다. 또한, 현 정부의 원전 감축과 같은 에너지 정책의 영향으로, 사용후핵연료 처리기술 연구개발에 대한 재평가가 시행되는 이 시점에서 해당 분야의 주요 키워드 분석은 향후 연구 방향 설정에 기여할 수 있을 것이라는 측면에서 실무적 의의를 갖는다. 더 나아가 원자력 공학 분야에 사회과학 분야를 폭넓게 적용할 필요가 있으며, 국가 정책적 변화를 고려해야 원자력 산업이 지속 가능할 것으로 사료된다.

영재와 평재 고등학생의 IT 역량에 대한 인식 (Perceptions of Information Technology Competencies among Gifted and Non-gifted High School Students)

  • 신민;안도희
    • 영재교육연구
    • /
    • 제25권2호
    • /
    • pp.339-358
    • /
    • 2015
  • 본 연구에서는 영재와 평재 고등학생들이 IT 역량을 어떻게 인식하고 있는지에 대해 비교해 보고자 하였다. 이를 위해 영재학교 2개교와 IT 특성화 고등학교 1개교 그리고 공업고등학교 1개교, 총 370명을 대상으로 표집 하였으며, 이들을 대상으로 IT 기업 인재 채용 시에 중요하게 고려되는 요인, IT 역량 향상을 위해 필요한 교과목과 이를 위한 효과적인 교육방법, IT 핵심역량에 대한 생각에 대해 응답하도록 하였다. 이 중 351명을 최종 분석 대상으로 선정하여 분석한 결과, 고등학생들은 IT 기업의 신규채용 시 중요한 요인이 IT 전문역량이라고 인식하고 있었으며, IT 역량을 향상시키기 위해서는 실무중심 교육과 실습위주의 교육 등 '실습 위주 교육'이 가장 필요하다고 응답하였다. 또한, IT 핵심역량 중에서 가장 중요하다고 생각하는 하위 요인으로 영재학교와 정보과학고등학교는 '소프트웨어 기본역량'이 가장 중요하다고 인식하고 있었고, 공업고등학교는 '네트워크 및 보안 기본역량'이 가장 중요하다고 지각한 것으로 나타났다. 마지막으로, IT 역량 함양을 위해 가장 필요한 교육과정으로는 학교 유형별로 다르게 인식하고 있었는데, 영재학교 학생들은 '알고리즘'이 가장 필요하다고 인식하였고, 정보과학고등학교 학생들은 '자료구조' 및 '컴퓨터 구조'의 필요성을 가장 크게 인식하고 있었다. 공업고등학교 학생들의 경우에는 '프로그래밍 언어'가 가장 필요한 교과목이라고 응답하였다. 또한, IT 기업 채용시 중요한 요인(IT 전문역량, 학력, 기초직업능력, IT공통역량), IT 핵심역량 함양 교육방법(학교교육), IT 핵심역량 중요도(소프트웨어 기본역량, 데이터베이스 기본역량, 네트워크 및 보안 기본 역량, 통합적인 역량), IT 역량 향상을 위한 교육방법(운영체제, 하드웨어)에서 영재학생이 평재학생보다 더 중요성이나 필요성을 높게 인식하는 경향이 있는 것으로 나타났다. IT 교육을 받고 있는 영재학생, 정보과학고등학생 및 공업고등학교 학생들이 인식하는 IT 핵심역량을 비교분석한 본 연구결과가 향후 IT 인력 양성을 위한 교육과정 및 교육방법을 개선하고 보완하는데 기초자료로 활용될 수 있기를 기대한다.

결정트리 상태 클러스터링에 의한 HM-Net 구조결정 알고리즘을 이용한 음성인식에 관한 연구 (A Study on Speech Recognition Using the HM-Net Topology Design Algorithm Based on Decision Tree State-clustering)

  • 정현열;정호열;오세진;황철준;김범국
    • 한국음향학회지
    • /
    • 제21권2호
    • /
    • pp.199-210
    • /
    • 2002
  • 본 논문은 한국어 음성인식에서 음향모델의 성능개선을 위한 기초적 연구로서 결정트리 상태 클러스터링에 의한 HM-Net (Hidden Markov Network)의 구조결정 알고리즘을 이용한 음성인식에 관한 연구를 수행하였다. 한국어는 다른 언어와 비교하여 많은 문법과 변이음이 존재하는데, 국어 음성학에서 정의한 다양한 변이음을 조사하고, 음소결정트리를 위한 음소 질의어 집합을 작성하였다. 본 논문의 HM-Net 구조결정 알고리즘의 아이디어는 SSS (Successive State Splitting) 알고리즘의 구조를 가지면서 미리 작성해 둔 문맥의존 음향모델의 상태를 다시 분할하는 방법이다. 즉, 모델의 각 상태위치마다 음소 질의어 집합에 의해 음소결정트리를 생성하고, PDT-SSS (Phonetic Decision Tree-based SSS) 알고리즘에 의해 문맥의존 음향모델의 상태열을 다시 학습하는 방법이다. 결정트리 상태 클러스터링에 의한 HM-Net 구조결정 알고리즘의 유효성을 확인하기 위해, 국어공학센터 (KLE)의 452단어와 항공편 예약에 관련된 YNU200 문장을 대상으로 음성인식 실험을 수행하였다. 인식실험 결과, 음소, 단어, 연속음성인식 실험에서 상태분할을 수행한 후 상태수의 변화에 따라 인식률이 점진적으로 향상됨을 확인하였다. 상태수 2,000일 때 음소, 단어 인식률이 평균 71.5%, 99.2%를 각각 얻었으며, 연속음성인식률은 상태수 800일 때 평균 91.6%를 얻었다. 또한 HM-Net 구조결정 알고리즘의 파라미터 공유관계를 비교하기 위해 상태공유를 수행하는 HTK를 이용한 단어인식 실험을 수행하였다. 실험결과, HTK를 이용한 문맥의존 음향모델에 비해 평균 4.0%의 인식률 향상을 보여, 본 논문에서 적용한 결정트리 상태 클러스터링에 의한 HM-Net 구조결정 알고리즘의 유효성을 확인하였다.

사용자 측면에서의 MMORPG <월드 오브 워크래프트> 성공요인 분석 (The Analysis of the Successful Factors from User Side of MMORPG )

  • 백재용;김치호
    • 만화애니메이션 연구
    • /
    • 통권42호
    • /
    • pp.151-175
    • /
    • 2016
  • 스마트폰의 등장이후 게임 산업은 콘솔과 PC Online 게임에서 모바일 게임 중심으로 변화되었다. 이러한 환경에서 게임 산업은 게임의 본질적 재미를 사용자에게 제공하기보다 상업적 수익을 위한 수단으로 발전하며 부정적으로 변질되었다. 특히, 비슷한 플레이 방식에 그래픽만 달라진 게임들이 지속적으로 출시되며 산업을 발전시키기 위한 도전은 하지 않고 현상만 바라보는 실태이다. 또한, 사용자들의 인식 수준도 발전하였다. 온라인 환경의 발전으로 사용자들은 자신의 경험을 쉽게 공유한다. 자신들이 경험한 게임의 평가를 온라인 매체에 공유하며 게임의 질에 대한 냉철한 평가를 하고 있다. 지금 당장은 시장에서 발생하는 높은 수익으로 인하여 게임 산업 자체가 발전한 듯 보이지만, 향후 게임 산업에 콘텐츠의 부정적 발전방식을 지양하는 사용자들의 인식이 높아질수록 시장자체에 큰 악영향을 줄 것으로 판단된다. 이러한 현 상황을 바탕으로 모바일 이전 게임 산업에서 성공했던 게임콘텐츠를 사용자 측면에서 분석하고 재조명하여 사용자들이 원하는 게임콘텐츠의 질과 게임 산업의 방향성에 대해 돌이켜볼 수 있는 연구가 필요하다. 본 연구에서는 위와 같은 문제점을 해결하기 위해 모바일 이전의 게임 중 가장 대중적으로 성공한 게임을 연구대상으로 지정하고, 사용자 측면에서 분석하였다. 온라인게임 <월드 오브 워크래프트(World of Warcraft)>는 약 1200만 여명의 사용자가 즐겼던 게임으로 현재까지 꾸준히 인기를 얻고 있는 가장 성공한 MMORPG이다. 본 연구를 위해 <월드 오브 워크래프트>를 초창기부터 즐겨온 5명의 일반사용자를 전문가집단을 구성하였으며, 사용자의 오랜 지지를 유지해온 저력을 분석하기 위해 비즈니스 모델과 설문조사, 인터뷰, Jobs-to-be-done, 피쉬바인 모델과 같은 사용자 경험을 도출 가능한 UX 방법론들을 복합적으로 적용하였다. 그럼으로, 사용자 측면에서의 <월드 오브 워크래프트> 성공요인은 (1)10년에 걸쳐 완성된 '세계관'을 통해 사용자가 파고들 여지를 제공한 것. (2)사용자들의 입장(문화, 언어 등)에 맞게 '국가별 정책'을 통해 게임을 제공한 것. (3)시간의 변화에 따라 '확장팩'을 제공하며 사용자들이 끊임없이 파고들 여지를 제공한 것으로 확인되었다. 본 연구를 통해 얻은 결과는 모바일 게임 발전이후 게임콘텐츠의 질적 하락의 문제점에 도달한 현 게임 산업의 콘텐츠 지표로서 산업적으로나 학술적으로 그 가치가 높다고 판단된다.

복잡지형 고해상도 격자망에서의 PRISM 기반 강수추정법 (The PRISM-based Rainfall Mapping at an Enhanced Grid Cell Resolution in Complex Terrain)

  • 정유란;윤경담;조경숙;이재현;윤진일
    • 한국농림기상학회지
    • /
    • 제11권2호
    • /
    • pp.72-78
    • /
    • 2009
  • 관측밀도가 동일한 조건에서 단위격자점의 크기를 줄일 경우 PRISM 방식에 의해 추정된 강수량 분포 가 단위격자점의 크기를 줄이기 전에 비해 개선되는지 확인하기 위해 PRISM 코드를 수정하여 $270m{\times}270m$ 격자점 단위로 구동할 수 있도록 하였다. 남한 전역의 지형자료를 270m DEM으로부터 준비하고 432개 기상청 자동기상관측소의 2007년 월별 적산강수량 자료를 입력자료로 하여 각 격자점의 PRISM 회귀식을 도출하였다. 회귀모형과 DEM 고도에 의해 각 격자점의 월별 적산강수량을 추정한 다음, 추정된 강수량분포도로부터 한국수자원공사 우량관측소 166개소에 해당하는 격자점의 자료를 추출하여 해당관측소의 실측값과 비교하였다. 동일한 강수자료를 이용하되 이번에는 5km 격자점의 PRISM 회귀모형을 유도하여 강수량 분포도를 작성하고 166개 지점 추정강수량을 추출하여 실측자료와의 차이를 RMSE로 표현하였다. 5km 대신 270m 분해능의 DEM을 사용할 경우 월 강수량이 100mm 이상인 경우 평균 10%의 오차 감소효과가 확인되었다.