• Title/Summary/Keyword: Langmuir adsorption

Search Result 753, Processing Time 0.022 seconds

Removal of Soluble Mn(II) using Multifunctional Sand Coated with both Fe- and Mn-oxides (철과 망간이 동시에 코팅된 다기능성 모래를 이용한 용존 Mn(II) 제거)

  • Lim, Jae-Woo;Chang, Yoon-Young;Yang, Jae-Kyu
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.2
    • /
    • pp.193-200
    • /
    • 2010
  • This study evaluated treatability of soluble Mn(II) using multifunctional sand media simultaneously coated with iron and manganese. In the preparation of IMCS(Iron and Manganese Coated Sand), 0.05 M Mn(II) solution and Fe(III) solution was mixed with sand at pH 7. The mineral type of IMCS was identified as the mixture of ${\gamma}-MnO_2$, goethite and magnetite($F_{e3}O_4$). The contents of Mn and Fe coated onto sand were 826 and 1676 mg/kg, respectively. The $pH_{pzc}$ of IMCS was measured as 6.40. The removal of soluble Mn(II) using IMCS and oxidants such as NaOCl and $KMnO_4$ was investigated with variation of the solution pH, reaction time and Mn(II) concentration in a batch test. The removal of Mn(II) on IMCS was 34% at pH 7.4 and the removals of Mn(II) on IMCS in the presence of NaOCl(13.6 mg/L) at pH 7 and $KMnO_4$(4.8 mg/L) at pH 7.6 were 96% and 89%, respectively. The removal of Mn(II) using IMCS and oxidants followed a typical cationic type, showing a gradual increase of removal as the solution pH increased. The removal of Mn(II) was rapid in the first 6 hrs and then a constant removal was observed. The maximum removed amount of Mn(II) on IMCS-alone and IMCS in the presence of oxidants such as NaOCl(13.6 mg/L) and $KMnO_4$(4.8mg/L) were 833.3, 1428.6 and 1666.7 mg/kg, respectively. Mn(II) removal onto the IMCS in the presence of oxidants was well described by second-order reaction and Langmuir isotherm expression.

Surface Complexation Modeling of Cadmium Sorption onto Synthetic Goethite and Quartz (표면착물 모델을 이용한 합성 침철광과 석영의 카드뮴 흡착 모사)

  • Ok, Yong-Sik;Jung, Jin-ho;Lee, Ok-Min;Lim, Soo-kil;Kim, Jeong-Gyu
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.36 no.4
    • /
    • pp.210-217
    • /
    • 2003
  • An alternative method to the empirical approach such as Langmuir and Freundlich model, surface complexation model using thermodynamic database is used to simulate adsorption behavior of cadmium for oxide minerals. Sorption of cadmium onto amorphous silica ($SiO_2$) and synthetic goethite (${\alpha}$-FeOOH) at various conditions of pH, initial cadmium loading, oxide concentration, and ionic strength, were investigated. For both oxide minerals, increasing cadmium concentration resulted in right shifting of the sorption curve of cadmium as the function of pH. The $pH_{50}$, where 50% of cadmium sorbed, of goethite (pH 5.25) was much smaller than that of the silica (pH 7.83). The sorption of cadmium onto both minerals were not affected by the background ion strength from $10^{-1}$ to $10^{-2}$ M of $KNO_3$. It indicated that the binding affinity of goethite surface for cadmium is much stronger than that of silica. The strong affinity of oxide mineral for cadmium can be explained by the existence of coordination or covalent bond between cadmium and surface of it.

Identification of Sorption Characteristics of Cesium for the Improved Coal Mine Drainage Treated Sludge (CMDS) by the Addition of Na and S (석탄광산배수처리슬러지에 Na와 S를 첨가하여 개량한 흡착제의 세슘 흡착 특성 규명)

  • Soyoung Jeon;Danu Kim;Jeonghyeon Byeon;Daehyun Shin;Minjune Yang;Minhee Lee
    • Economic and Environmental Geology
    • /
    • v.56 no.2
    • /
    • pp.125-138
    • /
    • 2023
  • Most of previous cesium (Cs) sorbents have limitations on the treatment in the large-scale water system having low Cs concentration and high ion strength. In this study, the new Cs sorbent that is eco-friendly and has a high Cs removal efficiency was developed by improving the coal mine drainage treated sludge (hereafter 'CMDS') with the addition of Na and S. The sludge produced through the treatment process for the mine drainage originating from the abandoned coal mine was used as the primary material for developing the new Cs sorbent because of its high Ca and Fe contents. The CMDS was improved by adding Na and S during the heat treatment process (hereafter 'Na-S-CMDS' for the developed sorbent in this study). Laboratory experiments and the sorption model studies were performed to evaluate the Cs sorption capacity and to understand the Cs sorption mechanisms of the Na-S-CMDS. The physicochemical and mineralogical properties of the Na-S-CMDS were also investigated through various analyses, such as XRF, XRD, SEM/EDS, XPS, etc. From results of batch sorption experiments, the Na-S-CMDS showed the fast sorption rate (in equilibrium within few hours) and the very high Cs removal efficiency (> 90.0%) even at the low Cs concentration in solution (< 0.5 mg/L). The experimental results were well fitted to the Langmuir isotherm model, suggesting the mostly monolayer coverage sorption of the Cs on the Na-S-CMDS. The Cs sorption kinetic model studies supported that the Cs sorption tendency of the Na-S-CMDS was similar to the pseudo-second-order model curve and more complicated chemical sorption process could occur rather than the simple physical adsorption. Results of XRF and XRD analyses for the Na-S-CMDS after the Cs sorption showed that the Na content clearly decreased in the Na-S-CMDS and the erdite (NaFeS2·2(H2O)) was disappeared, suggesting that the active ion exchange between Na+ and Cs+ occurred on the Na-S-CMDS during the Cs sorption process. From results of the XPS analysis, the strong interaction between Cs and S in Na-S-CMDS was investigated and the high Cs sorption capacity was resulted from the binding between Cs and S (or S-complex). Results from this study supported that the Na-S-CMDS has an outstanding potential to remove the Cs from radioactive contaminated water systems such as seawater and groundwater, which have high ion strength but low Cs concentration.