• Title/Summary/Keyword: Langmuir adsorption

Search Result 752, Processing Time 0.036 seconds

Altered Langmuir Adsorption Isotherm under the Consideration of the Displacement of Water Molecules with Adsorbate Ion at the Surface of Adsorbent (흡착제(吸着劑) 표면(表面)에서의 흡착질(吸着質)과 물분자(分子)의 치환(置換)을 고려(考慮)한 수정(修正) Langmuir 등온흡착식(等溫吸着式))

  • Kim, Dong-Su
    • Resources Recycling
    • /
    • v.15 no.3 s.71
    • /
    • pp.81-86
    • /
    • 2006
  • Altered Langmuir adsorption isotherm has been suggested for adsorption reactions occurring in aqueous environment based upon the concept of the steric displacement between adsorbates and water molecules at the surface of adsorbent. For the adsorption of $Cd^{2+}$ on activated carbon, the suggested adsorption isotherm was shown to be more well applied to the experimental results compared with the classical Langmuir adsorption isotherm. Based on this, regarding the adsorption system which following the Langmuir model more precise design and controllable operation of the process were considered to be attainable when the adsorption process is analyzed employing the altered adsorption isotherm.

Constant Correlation Factors between Temkin and Langmuir or Frumkin Adsorption Isotherms at Poly-Pt, Re, and Ni/Aqueous Electrolyte Interfaces

  • Chun Jang H.;Jeon Sang K.;Chun Jin Y.
    • Journal of the Korean Electrochemical Society
    • /
    • v.7 no.4
    • /
    • pp.194-200
    • /
    • 2004
  • The constant correlation factors between the Temkin and the Langmuir or the Frumkin adsorption isotherms of over-potentially deposited hydrogen (OPD H) for the cathodic H2 evolution reaction (HER) at poly-Pt and Re/0.5M $H_2SO_4$ and poly-Ni/0.05 M KOH aqueous electrolyte interfaces have been experimentally and consistently found using the phase-shift method. At intermediate values of the fractional surface coverage $(\theta),\;i.e.,\;02<{\theta}<0.8$, the Langmuir and Temkin adsorption isotherms of OPD H for the cathodic HER are correlated to each other even though the adsorption conditions or processes are different from each other. At the same range of $\theta$, correspondingly, the Frumkin and Temkin adsorption isotherms of OPD H for the cathodic HER are correlated to each other. The equilibrium constants $(K_o)$ for the Temkin adsorption isotherms $({\theta}\;vs.\; E)$ are consistently ca. 10 times greater than those (K, Ko) for the corresponding Langmuir or Frumkin adsorption isotherms ($({\theta}\;vs.\; E)$. The interaction parameters (g) for the Temkin adsorption isotherms $({\theta}\;vs.\; E)$ are consistently ra. 4.6 greater than those (g) for the corresponding Langmuir or Frumkin adsorption isotherms $({\theta}\;vs.\; E)$. These numbers (10 times and 4.6) can be taken as constant correlation factors between the corresponding adsolftion isotherms (Temkin, Langmuir, Frumkin) at the interfaces. The Temkin adsorption isotherm corresponding to the Langmuir or the Frumkin adsorption isotherm, and vice versa, can be effectively verified or confirmed using the constant correlation factors. Both the phase-shift methodand constant correlation factors are useful and effective for determining or confirming the suitable adsorption isotherms (Temkin, Langmuir, Frumkin) of intermediates for sequential reactions in electrochemical systems.

A Study on VOCS Adsorption at Low Pressure (낮은 분압의 VOCs의 흡착에 관한 연구)

  • Song, Hun-Taek;Kan, Sung-Won;Min, Byong-Hun;Suh, Sung-Sup
    • Clean Technology
    • /
    • v.9 no.4
    • /
    • pp.153-161
    • /
    • 2003
  • This study was carried out as a basic experiment for development of adsorption process in which benzene and toluene was adsorbed on activated carbon. In the static adsorption experiment, Adsorption character of benzene and toluene was studied by change of temperature and pressure. Activated carbon 12~20mesh and activated carbon 20~40mesh was used as adsorbents, Benzene, toluene and nitrogen as adsorbates. Experimental data were obtained to fitted to Langmuir isotherm and dependence was acquired. Parameters of adsorption heat and adsorption constant was obtained. Static adsorption experiment for binary mixtures confirmed that Langmuir isotherm parameters could be applicable to Extended Langmuir isotherm. Experimental technique used in this study only requires pressure measurement and this technique is different from the conventional method which measures gas mole compositions before adsorption and after adsorption. The dynamic adsorption experiment was carried out and the experimental results was compared with the computer simulation results. In this study, basic data was acquired to decide adsorption conditions in the process.

  • PDF

Adsorption Equilibria of Acetic Acid on Activated Carbon (활성탄에서의 아세트산 흡착거동 연구)

  • Park, Kyong-Mok;Nam, Hee-Geun;Mun, Sungyong
    • Korean Chemical Engineering Research
    • /
    • v.53 no.1
    • /
    • pp.127-130
    • /
    • 2015
  • In this study, the adsorption equilibria of acetic acid on activated carbon were investigated at the temperatures of 313.15 K and 323.15 K. The obtained adsorption data were then fitted by Langmuir, Bi-Langmuir, and Freundlich models, in which the relevant model parameters were determined by minimizing the sum of the squares of deviations between experimental data and calculated values. The comparison results revealed that Bi-Langmuir model could account for the adsorption equilibrium data of acetic acid with the highest accuracy among the three adsorption models considered.

Pure Gas Adsorption Equilibrium for H2/CO/CO2 and Their Binary Mixture on Zeolite 5A (Zeolite 5A에서의 H2/CO/CO2 단성분 및 혼합성분의 흡착평형)

  • Ahn, Eui-Sub;Jang, Seong-Cheol;Choi, Do-Young;Kim, Sung-Hyun;Choi, Dae-Ki
    • Korean Chemical Engineering Research
    • /
    • v.44 no.5
    • /
    • pp.460-467
    • /
    • 2006
  • Adsorption experiments for $H_2$, $CO_2$, CO, and their binary mixtures on zeolite 5A were performed by static volumetric method. Experimental data were obtained at temperatures of 293.15, 303.15 and 313.15 K and at pressures to 25 atm. The parameters obtained from single component adsorption isotherm. Multicomponent adsorption equilibria could be predicted and compared with experimental data. Langmuir isotherm, Langmuir-Freundlich isotherm and Dual-Site Langmuir isotherm be used to predict the experimental results for binary adsorption equilibria of $CO_2/CO$ and $H_2/CO_2$ on zeolite 5A. Dual-Site Langmuir isotherm showed the best agreement with the experimental results.

Application of Adsorption Isotherms for Manganese Nodule-Cadmium Interaction (망간단괴-Cd 상호작용에 대한 등온흡착식 적용)

  • 전영신;김진화;김동수
    • Resources Recycling
    • /
    • v.8 no.1
    • /
    • pp.37-43
    • /
    • 1999
  • Studies have been conducted for the purpose of using manganese nodule and residue remained after extracting valuable metals [mm it as the adsorbent of cadmium wastewater. The study observed the adsorption percentage according to initial cadmium concentration and interpreted each adsorption systems by applying the Freundlich, Langmuir, and Temkin isotherms. The adsorption amounts increased as the initial concentration at cadmium ion increased, whereas the adsorption percentage decreased. Linearity was shown when applied to the Freundlich and Langmuir isotherms. The k value which evaluates the adsorption capacity of adsorbent in Freundlich isotherm, turned out to be 11.72, the highest in case of manganese nodule. The Xm value, the maximum adsorption amount of the adsorbate that adsorbs as a monolayer in Langmuir isotherm of manganese nodule, was estimated as 0.16, representing higher value compared with those of leached residue, leached residue-raw manganese nodule mixture, and activated carbon.

  • PDF

A Comparison of the IAS and Langmuir Models for Multisolute Adsorption of Organic Cowlpounds in Soil (유기화합물들이 혼합상태에서 토양입자에 흡착하는 정도를 IAS와 Langmuir Model을 이용한 예측비교연구)

  • 윤춘경
    • Geotechnical Engineering
    • /
    • v.11 no.2
    • /
    • pp.121-138
    • /
    • 1995
  • The Langmuir competitive model and the IAS(ideal adsorption solution) model were eveluated and compared in a multisolute adsorption study using five organic compounds (phenol, 2, 4-dichlorophenol, 2, 4, 6-trichlorophenot brucine, and thiourea) and two soils. The chemicals were evaluated individually and in mixtures. In general, the IfS model predicted the equilibrium concentration of a chemical in a mixture better than the Langmuir model. The Langmuir model underestimated the sorption of phenol when the concentration of another compound in a mixture with phenol was high. Neither of the models predicted satisfactorily the equilibrium concentration of thiourea in the mixtures. Thiourea is an aliphatic compound while the other four chemicals are aromatic compounds.

  • PDF

Phosphorus Adsorption by Layered Double Hydroxide (층상이중수산화물을 이용한 인 흡착)

  • Jung, Yong-Jun;Min, Kyung-Sok
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.19 no.4
    • /
    • pp.404-410
    • /
    • 2005
  • A series of batch type adsorption experiments were performed to remove aquatic phosphorus, where the layered double hydroxide (HTAL-CI) was used as an powdered adsorbent. It showed high adsorption capacity (T-P removal: 99.9%) in the range of pH 5.5 to 8.8 in spite of providing low adsorption characteristics (pH<4). The adsorption isotherm was approximated as a modified Langmuir type equation, where the maximum adsorption amount (50.5mg-P/g) was obtained at around 80mg-P/L of phosphorus concentration. A phosphate ion can occupy three adsorption sites with a chloride ion considering the result that 1 mol of phosphate ion adsorbed corresponded to the 3 moles of chloride ion released. Although the chloride ion at less than 1,000mg-CI/L did not significantly affect the adsorption capacity of phosphate, carbonate ion inhibited the adsorption property.

Determination of the Langmuir and Temkin Adsorption Isotherms of H for the Cathodic H2 Evolution Reaction at a Pt/KOH Solution Interface Using the Phase-Shift Method

  • Chun Jang-H.;Jeon Sang-K.;Chun Jin-Y.
    • Journal of the Korean Electrochemical Society
    • /
    • v.9 no.1
    • /
    • pp.19-28
    • /
    • 2006
  • The phase-shift method for determining the Langmuir, Frumkin, and Temkin adsorption isotherms ($\theta_H\;vs.\;E$) of H for the cathodic $H_2$ evolution reaction (HER) at a Pt/0.1 M KOH solution interface has been proposed and verified using cyclic voltammetric, differential pulse voltammetric, and electrochemical impedance techniques. At the Pt/0.1 M KOH solution interface, the Langmuir and Temkin adsorption isotherms ($\theta_H\;vs.\;E$), the equilibrium constants ($K_H=2.9X10^{-4}mol^{-1}$ for the Langmuir and $K_H=2.9X10^{-3}\exp(-4.6\theta_H)mol^{-1}$ for the Temkin adsorption isotherm), the interaction parameters (g=0 far the Langmuir and g=4.6 for the Temkin adsorption isotherm), the rate of change of the standard free energy of $\theta_H\;with\;\theta_H$ (r=11.4 kJ $mol^{-1}$ for g=4.6), and the standard free energies (${\Delta}G_{ads}^{\circ}=20.2kJ\;mol^{-1}$ for $k_H=2.9\times10^{-4}mol^{-1}$, i.e., the Langmuir adsorption isotherm, and $16.7<{\Delta}G_\theta^{\circ}<23.6kJ\;mol^{-1}$ for $K_H=2.9\times10^{-3}\exp(-4.6\theta_H)mol^{-1}$ and $0.2<\theta_H<0.8$, i.e., the Temkin adsorption isotherm) of H for the cathodic HER are determined using the phase-shift method. At intermediate values of $\theta_H$, i.e., $0.2<\theta_H<0.8$, the Temkin adsorption isotherm ($\theta_H\;vs.\;E$) corresponding to the Langmuir adsorption isotherm ($\theta_H\;vs.\;E$), and vice versa, is readily determined using the constant conversion factors. The phase-shift method and constant conversion factors are useful and effective for determining the Langmuir, Frumkin, and Temkin adsorption isotherms of intermediates for sequential reactions and related electrode kinetic and thermodynamic data at electrode catalyst interfaces.

The Phase-Shift Method for the Langmuir Adsorption Isotherms at the Noble Metal (Au, Rh) Electrode Interfaces (귀금속(Au, Rh) 전극계면에서 Langmuir 흡착등온식에 관한 위상이동방법)

  • Chun, Jang H.;Jeon, Sang K.;Lee, Jae H.
    • Journal of the Korean Electrochemical Society
    • /
    • v.6 no.2
    • /
    • pp.119-129
    • /
    • 2003
  • The Langmuir adsorption isotherms of the over-potentially deposited hydrogen (OPD H) fur the cathodic $H_2$ evolution reaction (HER) at the poly-Au and $Rh|0.5M\;H_2SO_4$ aqueous electrolyte interfaces have been studied using cyclic voltammetric and ac impedance techniques. The behavior of the phase shift $(0^{\circ}{\leq}{-\phi}{\leq}90^{\circ})$ for the optimum intermediate frequency corresponds well to that of the fractional surface coverage $(1{\geq}{\theta}{\geq}0)$ at the interfaces. The phase-shift profile $({-\phi}\;vs.\;E)$ for the optimum intermediate frequency, i.e., the phase-shift method, can be used as a new electrochemical method to determine the Langmuir adsorption isotherm $({\theta}\;vs.\;E)$ of the OPD H for the cathodic HER at the interfaces. At the poly-Au|0.5M $H_2SO_4$ aqueous electrolyte interface, the equilibrium constant (K) and the standard free energy $({\Delta}G_{ads})$ of the OPD H are $2.3\times10^{-6}$ and 32.2kJ/mol, respectively. At the poly-Rh|0.5M $H_2SO_4$ aqueous electrolyte interface, K and ${\Delta}G_{ads}$ of the OPD H are $4.1\times10^4\;or\;1.2\times10^{-2}$ and 19.3 or 11.0kJ/mol depending on E, respectively. In contrast to the poly-Au electrode interface, the two different Langmuir adsorption isotherms of the OPD H are observed at the poly-Rh electrode interface. The two different Langmuir adsorption isotherms of the OPD H correspond to the two different adsorption sites of the OPD H on the poly-Rh electrode surface.