• Title/Summary/Keyword: Langmuir Isotherm Adsorption

Search Result 507, Processing Time 0.026 seconds

Adsorption Characteristics of Reactive Red 120 by Coal-based Granular Activated Carbon : Isotherm, Kinetic and Thermodynamic Parameters (석탄계 입상활성탄에 의한 Reactive Red 120의 흡착 특성 : 등온선, 동력학 및 열역학 파라미터)

  • Lee, Jong Jib
    • Applied Chemistry for Engineering
    • /
    • v.31 no.2
    • /
    • pp.164-171
    • /
    • 2020
  • Adsorption characteristics of reactive red 120 (RR 120) dye by a coal-based granular activated carbon (CGAC) from an aqueous solution were investigated using the amount of activated carbon, pH, initial concentration, contact time and temperature as adsorption variables. Isotherm equilibrium relationship showed that Langmuir's equation fits better than that of Freundlich's equation. The adsorption mechanism was considered to be superior to the adsorption of monolayer with uniform energy distribution. From the evaluated Langmuir separation coefficients (RL = 0.181~0.644), it was found that this adsorption process belongs to an effective treatment area (RL = 0~1). The adsorption energy determined by Temkin's equation and Dubinin-Radushkevich's equation was E = 15.31~7.12 J/mol and B = 0.223~0.365 kJ/mol, respectively. The adsorption process showed the physical adsorption (E < 20 J/mol and B < 8 kJ/mol). The adsorption kinetics followed the pseudo first order model. The adsorption reaction of RR 120 dye on CGAC was found to increase spontaneously with increasing the temperature because the free energy change decreased with increasing the temperature. The enthalpy change (12.747 kJ/mol) indicated an endothermic reaction. The isosteric heat of adsorption (△Hx = 9.78~24.21 kJ/mol) for the adsorption reaction of RR 120 by CGAC was revealed to be the physical adsorption (△Hx < 80 kJ/mol).

Schiff Bases as Anticorrosive Additives for Mild Steel Corrosion in Acid Media

  • Abirami, M.;Sasikala, S.;Chitra, S.;Parameswari, K.;Selvaraj, A.
    • Corrosion Science and Technology
    • /
    • v.8 no.1
    • /
    • pp.1-10
    • /
    • 2009
  • The influence of Schiff bases on the corrosion inhibition of mild steel in 1 M $H_2SO_4$ have been investigated by weight loss, gasometry, impedance and polarization techniques. The results obtained reveal that these compounds act as good inhibitors. The inhibition efficiency of Schiff bases increased with concentration and synergistically increased on addition of chromate, sulphate and halide ions. Potentiodynamic polarization measurements clearly reveal that the investigated inhibitors are of mixed type but they are more cathodic in nature. The adsorption of these compounds on mild steel surface for both the acids were found to obey Langmuir adsorption isotherm. The surface morphology was studied by SEM and UV reflectance spectra.

Corrosion Inhibition of Mild Steel in Acidic Medium by Jathropha Curcas Leaves Extract

  • Odusote, Jamiu K.;Ajayi, Olorunfemi M.
    • Journal of Electrochemical Science and Technology
    • /
    • v.4 no.2
    • /
    • pp.81-87
    • /
    • 2013
  • Inhibition of corrosion of mild steel in sulphuric acid by acidic extract of Jatropha Curcas leaves has been studied using weight loss and thermometric measurements. It was found that the leaves extract act as a good corrosion inhibitor for mild steel in all concentrations of the extract. The inhibition action depends on the concentration of the Jatropha Curcas leaves extract in the acid solution. Results for weight loss and thermometric measurements indicate that inhibition efficiency increase with increasing inhibitor concentration. The adsorption of Jatropha curcas leaves extract on the surface of the mild steel specimens obeys Langmuir adsorption isotherm. Based on the results, Jatropha curcas leaves extract is recommended for use in industries as a replacement for toxic chemical inhibitors.

Inhibition Effect of Amino Acids on the Corrosion of Aluminum in Artificial Sea Water (인공해수에서 알루미늄의 부식에 미치는 아미노산의 부식억제효과)

  • Chon, Jung-Kyoo;Kim, Youn-Kyoo
    • Journal of the Korean Electrochemical Society
    • /
    • v.12 no.4
    • /
    • pp.311-316
    • /
    • 2009
  • Inhibition effects of alanine and methionine on the corrosion of aluminum were investigated in artificial sea water. Based on the low coverage of alanine and methionine we suggested that alanine and methionine adsorption process in aluminum surface is Langmuir isotherm and the carboxyl ion of amino acids seems to be adsorbed on Al.

Adsorption Characteristics of Radioactive Cs Ion by Zeolite X (제올라이트 NaX에 의한 방사성 물질인 Cs 이온의 흡착 특성)

  • Lee, Chang-Han;Lee, Min-Gyu
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.39 no.2
    • /
    • pp.66-73
    • /
    • 2017
  • This study was to evaluate the influential parameters such as intial Cs concentration, reaction temperature, contact time and pH variation of solution on Cs adsorption. Using the experimental data, adsorption kinetics, isotherms and thermodynamic properties were analyzed. The Cs ion adsorption of the zeolite X was effective in the range from pH 5 to 10 and reached equilibrium after 60 minutes. The adsorption kinetics and isotherms of Cs ion with the zeolite X was described well by the pseudo-second-order kinetic and Langmuir isotherm model. The maximum adsorption capacities of Cs ion calculated from Langmuir isotherm model at 293~333 K were from 303.03 mg/g to 333.33 mg/g. It was found that thermodynamic property of Cs ion absorption on the zeolite X was spontaneous and endothermic reaction. The experimental data were fitted a second-order polynomial equation by the multiple regression analysis. The values of the dependent variable calculated by this best fitted model equation were in very good agreement with the experimentally obtained values.

Fabrication of Chitosan Nanoparticles with Lactococcus lactis for the Removal of Phthalate Endocrine Hormone (Phthalate계 환경호르몬 제거를 위한 Lactococcus lactis를 함유한 Chitosan Nanoparticles의 제조)

  • Yoon, Hee-Soo;Kang, Ik-Joong
    • Korean Chemical Engineering Research
    • /
    • v.59 no.1
    • /
    • pp.21-34
    • /
    • 2021
  • Chitosan nanoparticles (CNPs) and Lactococcus lactis (L. lac.) were used as adsorbents to evaluate the adsorption performance of endocrine hormones, which are phthalates, in the healthy food packages. CNPs were produced through the cross bond with tripolyphosphate (TPP), and L. lac.-CNPs were prepared through the introduction of L. lac. during the preparation. The various functional groups of all adsorbents were identified using Fourier transform infrared spectroscopy (FTIR). Adsorption isotherm and adsorption kinetic confirmed the adsorption behavior and mechanism of CNPs, L. lac. and L. lac.-CNPs. The adsorption behavior of DBP and DEP for all particles was more suitable for the Freundlich adsorption isotherm model than for the Langmuir adsorption isotherm model, which means that the surface of the particles is heterogeneous. The adsorption mechanism was more suitable for the Pseudo-2nd-order model than for the Pseudo-1st-order model. This means that due to the presence of various functional groups on the particle surface, the adsorption of DBP and DEP is dominated by chemical adsorption such as electrostatic attraction and hydrogen bonding rather than physical adsorption. Finally, it was confirmed that the preparation of CNPs and L. lac.-CNPs can be performed easily and quickly, and it could be used as a cheaper adsorbent that can effectively remove phthalates.

Adsorption of Dyes with Different Functional Group by Activated Carbon: Parameters and Competitive Adsorption (활성탄에 의한 작용기가 다른 염료의 흡착: 파라미터 및 경쟁 흡착)

  • Lee, Jong Jib
    • Applied Chemistry for Engineering
    • /
    • v.33 no.2
    • /
    • pp.151-158
    • /
    • 2022
  • In this paper, parameter characteristics such as pH effect, isotherm, kinetic and thermodynamic parameters and competitive adsorption of dyes including malachite green (MG), direct red 81 (DR 81) and thioflavin S (TS), which have different functional groups, being adsorbed onto activated carbon were investigated. Langmuir, Freundlich and Temkin isotherm models were employed to find the adsorption mechanism. Effectiveness of adsorption treatment of three dyes by activated carbon were confirmed by the Langmuir dimensionless separation factor. The mechanism was found to be a physical adsorption which can be verified through the adsorption heat calculated by Temkin equation. The adsorption kinetics followed the pseudo second order and the rate limiting step was intra-particle diffusion. The positive enthalpy and entropy changes showed an endothermic reaction and increased disorder via adsorption at the S-L interface, respectively. For each dye molecule, negative Gibbs free energy increased with the temperature, which means that the process is spontaneous. In the binary component system, it was found that the same functional groups of the dye could interfere with the mutual adsorption, and different functional groups did not significantly affect the adsorption. In the ternary component system, the adsorption for MG lowered a bit, likely to be disturbed by the other dyes meanwhile DR 81 and TS were to be positively affected by the presence of MG, thus resulting in much higher adsorption.

Experiment on Chloride Adsorption by Calcium Aluminate Phases in Cement (시멘트내 칼슘 알루미네이트 상에 의한 염소이온의 흡착반응 연구)

  • Yoon, In-Seok
    • Journal of the Korea Concrete Institute
    • /
    • v.29 no.4
    • /
    • pp.389-397
    • /
    • 2017
  • Friedel's salt is an important product of chemical adsorption between cement hydrate and chloride ions because it contains chlorine in its structure. When cement reacts with water in the presence of chloride ions, the $C_3A$ phase, and $C_4AF$ phase react with chloride to produce Friedel's salt. If chloride ions penetrate into concrete from external environments, many calcium aluminate hydrates, including AFm, can bind chloride ions. It is very important, therefore, to investigate the chloride binding isotherm of $C_3A$ phase, $C_4AF$ phase, and AFm phase to gain a better understanding of chloride binding in cementitious materials. Meanwhile, the adsorption isotherm can provide us with the fundamental information for the understanding of adsorption process. The experimental results of the isotherm can supply not only the quantitative knowledge of the cement-Friedel's salt system, but also the mechanism of adsorption and the properties of their interactions. The purpose of this study is to explore the time dependant behaviors of chloride ions adsorption with $C_3A$, $C_4AF$ and AFm phases. The chloride adsorption isotherm was depicted with Langmuir isotherm and the adsorption capacity was low in terms of the stoichiometric point of view. However, the chloride adsorption of AFm phase was depicted with Freundlich isotherm and the value was very low. Since the amount of the adsorption was governed by temperature, the affecting parameters of isotherm were expressed as a function of temperature.

Study on Isotherm, Kinetic and Thermodynamic Parameters for Adsorption of Methyl Green Using Activated Carbon (활성탄을 이용한 메틸 그린 흡착에 있어서 등온선, 동력학 및 열역학 파라미터에 대한 연구)

  • Lee, Jong Jib
    • Applied Chemistry for Engineering
    • /
    • v.30 no.2
    • /
    • pp.190-197
    • /
    • 2019
  • The adsorption of methyl green dye using an activated carbon from an aqueous solution was investigated. Adsorption experiments were carried out as a function of the adsorbent dose, initial concentration, contact time and temperature. The Langmuir isotherm model showed a good fit to the equilibrium adsorption data. Based on the estimated Langmuir separation factor, ($R_L=0.02{\sim}0.106$), this process could be employed as the effective treatment (0 < $R_L$ < 1). It was found that the adsorption was a physical process with the adsorption energy (E) value range between 316.869 and 340.049 J/mol obtained using Dubinin-Radushkevich equation. The isothermal saturation capacity obtained from brunauer emmett teller (BET) model increased with increasing the temperature. The kinetics of adsorption followed a pseudo second order model. The free energy and enthalphy values of -5.421~-7.889 and 31.915 kJ/mol, respectively indicated that the adsorption process follows spontaneous endothermic reaction. The isosteric heat of adsorption increased with the increase of equilibrium adsorption amounts, and the total interaction of the adsorbent - adsorbate increased as the surface coverage increased.

A Study on Control of Trichloroethyene by Soil bed (토양상에 의한 Trichloroethyene처리에 관한 연구)

  • 이혜령;고경숙;임경택
    • Journal of Environmental Health Sciences
    • /
    • v.24 no.3
    • /
    • pp.41-47
    • /
    • 1998
  • The purpose of this research is evaluation of adsorption capacity of the cast for TCE comparing with the yellow clay. Furthermore, the experimental data was fitted with the Langmuir and Freundlich isotherm and was found to be apllicable to the adsorption isotherm equation. The soil bed reactor used in this study was made of glass(10 cm in diameter, 100 cm in depth). The cast and yellow clay used as adsorbents were screened with 8-20 mesh mecanically. Results from Equilibrium test with adsorbents showed that the equibrium time of the cast and yellow clay was 9min independent of the amount of the adsorbents. The adsorption efficiencys of the cast and yellow clay for TCE was 66.3% and 56.2%, respectively. In the application of Freundlich isotherm, 1/n of the cast and yellow clay were 0.786 and 0.704, respectively. These results showed that the cast was more available than the yellow clay as TCE adsorbent. The best adsorption capacity was showed at 0% moisture content, 70 ppm inlet concentration and 25$^{\circ}$C temperature.

  • PDF