• Title/Summary/Keyword: Langmuir 흡착 모델

Search Result 139, Processing Time 0.026 seconds

Adsorption Isotherms of 2-deoxyuridine (dUrd) and 2-deoxycytidine (dCyd) by Static Method (정적 방법에 의한 2-deoxyuridine(dUrd)과 2-deoxycytidine(dCyd)의 흡착 평형식)

  • Lee, Kwang-Jin;Lee, Sang-Hoon;Row, Kyung-Ho;Um, Byung-Hun
    • Korean Journal of Food Science and Technology
    • /
    • v.40 no.1
    • /
    • pp.111-114
    • /
    • 2008
  • Adsorption isotherm with the most fundamental information related to chromatography process is obtained experimentally. The adsorption isotherm of 2-deoxyuridine (dUrd) and 2-deoxycytidine (dCyd) with ${\mu}$-Bondapak $C_{18}$, static method was adopted in RP-HPLC. The concentrations of mobile and stationary phases were measured with different initial concentrations of dUrd and dCyd, 1, 3, 5, 7, 10 mg/mL, respectively. The adsorption isotherm data were applied by Freundlich, Langmuir, Sips, and Radke-Prausnitz model equations. As a result of the regression analysis, standard error between adsorption isotherm of dUrd and Radke-Prausnitz equation was very low, and adsorption isotherm of dCyd was in an agreement with Sips equation very well.

Prediction of Organic Acid Chromatogram in High Performance Ion Chromatography (고성능 이온 크로마토그래피에서 유기산의 크로마토그램 예측 연구)

  • 원혜진;한선호;박양순;조기수;김인호
    • KSBB Journal
    • /
    • v.15 no.1
    • /
    • pp.60-65
    • /
    • 2000
  • In order to predict the chromatogram for organic acid in ion chromatography, Langmuir isotherm parameters were obtained by Retention Time Method (RTM) and moment method. Ion chromatography analysis for formic acid was performed and compared with theoretically predicted profiles under isocratic condition. Band profiles were estimated with the equilibrium-dispersive model of chromatography using a PDEsolver Macsyma . The relationship between the characteristics of chromatogram and the variable operating condition in chromatography such as the flow rate, ionic strength and injection volume was studied. Satisfactory agreement was observed between the experimental and the estimated chromatograms with parameters obtained form the moment method.

  • PDF

Transport of Zn Ion under various pH Conditions in a Sandy Soil (사질토양에서의 pH조건에 따른 Zn의 이동특성)

  • Park, Min-Soo;Kim, Dong-Ju
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.1
    • /
    • pp.33-42
    • /
    • 2000
  • Adsorption onto the surfaces of solid particles is a well known phenomenon that causes the retardation effect of heavy metals in soils. For adequate remediation of soil and groundwater contamination, it is important to investigate the mobility of heavy metals that largely depends on pH conditions in the soil water since adsorption of heavy metals is pH-dependent. In this study, we investigated the transport of Zn ion under various pH conditions in a sandy soil by conducting batch and column tests. The batch test was performed using the standard procedure of equilibrating fine fractions collected from the soil with eleven different initial $ZnCl_2$ concentrations, and analysis of Zn ion in the equilibrated solutions using ICP-AES. The column test consisted of monitoring the concentrations of soil solutions exiting the soil column with time known as a breakthrough curve (BTC). We injected respectively $ZnCl_2$ and KCl solutions with the concentration of 10 g/L as a tracer in a square pulse type under three different pH conditions (7.7, 5.8, 4.1) and monitored the flux concentration at the exit boundary using an EC meter and ICP-AES. The resident concentration was also monitored at the 10cm-depth by Time Domain Reflectometry (TDR). The results of batch test showed that ion exchange process between Zn and other cations (Ca, Mg) was predominant. The retardation coefficients obtained from adsorption isotherms (Linear, Freundlich, Langmuir) resulted in the various values ranging from 1.2 to 614.1. No retardation effect but ion exchange was found for the BTCs under all pH conditions. This can be explained by the absence of other cations to desorb Zn ion from soil exchange sites under the conditions of ETC experiment imposing blank water as leachate in steady-state flow. As pH decreased, the peak concentration of Zn increased due to the competition of Zn with hydrogen ions ($H^+$) and the concentrations of other cations decreased. The peak concentration of Zn was increased by 12.7 times as pH decreased from 7.7 to 4.1.

  • PDF

Development of Mixed-bed Ion Exchange Resin Capsule for Water Quality Monitoring (수질 중 질소와 인 모니터링을 위한 혼합이온교환수지 캡슐의 개발)

  • Park, Chang-Jin;Kim, Dong-Kuk;Ok, Yong-Sik;Ryu, Kyung-Ryul;Lee, Ju-Young;Zhang, Yong-Seon;Yang, Jae-E
    • Applied Biological Chemistry
    • /
    • v.47 no.3
    • /
    • pp.344-350
    • /
    • 2004
  • This study was conducted to develop and assess the applicability of mixed-bed ion exchange resin capsules for water quality monitoring in small agricultural watershed. Recoveries of resin capsules for inorganic N and P ranged from 96 to 102%. The net activation energies and pseudo-thermodynamic parameters, such as ${\Delta}G^{o\ddag},\;{\Delta}H^{o\ddag},\;and\;{\Delta}S^{o\ddag}$ for ion adsorption by resin capsules, exhibited relatively low values, indicating the process might be governed by chemical reactions such as diffusion. However, those values increased with temperature coinciding with the theory. The reaction reached pseudo-equilibrium within 24 hours for $NH_4-N\;and\;NO_3-N$, and only 8 hours for $PO_4-P$, respectively. The selectivity of resin capsules were in the order of $NO_3\;^-\;>\;NH_4\;^+\;>\;PO_4\;^{3-}$, coinciding with that of encapsulated Amberlite IRN-150 resin. At the initial state of equilibrium, the resin adsorption quantity was linearly proportional to the mass of ions in the streams, but the rate of movement leveled off, following Langmuir-type sorption isotherm. The overall results demonstrated that the resin capsule system was suitable for water quality monitoring in small agricultural watershed, judging from the reaction mechanism(s) of the resin capsule and the significance of model in field calibration.

Synthesis of ETBE as an Octane Enhancer for Gasoline over Macroreticular Robin Catalysts (그물구조 수지 촉매상에서 가솔린 옥탄가 향상제인 ETBE 합성)

  • Park, Jin-Hwa;Lee, Jin-Hyung;Kim, Jae-Seung
    • Applied Chemistry for Engineering
    • /
    • v.5 no.5
    • /
    • pp.825-835
    • /
    • 1994
  • Synthesis of ETBE as an octane number enhancer from ethanol and isobutene in a flow reactor under atmospheric pressure was studied. Amberlyst-15 and Amberlyst XN-1010 were used as catalysts within the temperature range of $70-140^{\circ}C$. The activity of Amberlyst 15 was higher than that of Amberlyst XN-1010. The reaction rate data obtained under differential reactor condition were tested by a linear regression method to determine the reaction mechanism and kinetic parameters. The ETBE synthesis reaction seems to be proceeded via the LHHW(Langmuir-Hinshelwood-Hougen-Watson) machanism. The activation energy of the surface reaction was estimated by the reaction rate constants as well as the adsorption equilibrium constants. Apparent activation energies are 18.64 and 24.19kcal/mol for Amberlyst-15 and Amberlyst XN-1010, respectively.

  • PDF

Modification of Vermiculite for Use as a Floating Adsorbent for Copper Removal (수중의 구리 제거를 위한 질석흡착제의 표면개질 연구)

  • Lee, Sangmin;Lee, Taeyoon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.17 no.11
    • /
    • pp.5-14
    • /
    • 2016
  • The main objective of this study was to evaluate the removal properties of Cu from existing exfoliated vermiculite (EV) coated with a mixed solution of sulfuric acid and glycerol on the $580^{\circ}C$ in heating, which uses coated with glycerol of copper ions can be removed more effectively. Serial batch kinetic tests and batch sorption tests were conducted to determine the removal characteristics for Cu in aqueous solution. The result of batch kinetic test shows that removal rate, $K_{obs}$ (1/hr), of Cu are 0.579, 0.878, 3.459, and 6.578 for MEV weight 1 g (25 g/L), 2 g (50 g/L), 3 g (75 g/L), 4 g (100 g/L), respectively. In this case the initial pH of the solution was 3.26. The removal experiment according to the concentration, $K_{obs}$ (1/hr), of Cu are 1.96, 0.878, 1.25, and 1.04 for the initial concentration of 3 mg/L, 5 mg/L, 8 mg/L, 10 mg/L, and the initial pH of the solution are 3.46, 3.26, 3.10, 2.96, respectively. Influence of initial pHs on Cu removal were tested under 1g of MEV with 5 mg/L of Cu solution. $K_{obs}$ (1/hr) were increased from 0.263 (pH 3) to 0.525 (pH 5). It leads to the conclusion that the removal rates are inversely proportional to the initial Cu concentration and are increased proportional to the initial pHs. Sorption capacity of MEV was determined by batch sorption tests. The maximum sorption capacity ($Q_{max}$) obtained from Langmuir was 0.761 mg/g, Linear and Freundlich partition coefficients were 0.494 L/g and 0.729 L/g (1/n = 0.476). These results show that the MEV could be used as an excellent adsorbent for copper contained in various types of aqueous solutions.

Experiment and Simulation of 2-bed PSA for Hydrogen Separation from H2/CH4 Gas Mixture (수소/메탄 혼합 기체로부터 수소 분리를 위한 두 탑 PSA 실험과 전산 모사)

  • Nam, Gi-Moon;Jeong, Byung-Man;Kang, Seok-Hyun;Lee, Chang-Ha;Lee, Byung-Kwon;Choi, Dae-Ki
    • Korean Chemical Engineering Research
    • /
    • v.43 no.2
    • /
    • pp.249-258
    • /
    • 2005
  • A two-column six-step pressure swing adsorption(PSA) process was to study separation of hydrogen from hydrogen and methane($60_{vol}%/40_{vol}%$) binary system onto activated carbon adsorbent. The effects of the feed gas pressure, the feed flowrate and the P/F(purge to feed) ratio on the process performance were evaluated. The cyclic steady-states of PSA process were reached to after 15 cycles. $H_2$ purity increases according as the P/F ratio and pressure increase and the feed flow rate decreases; however, $H_2$ recovery shows an opposite phenomena to the purity. PSA process simulation studied to find optimum operation condition. In the results, 22 LPM feed flowrate, 11 atm adsorption pressure and 0.10 P/F ratio might be optimal values to obtain more than 75% recovery and 99% purity hydrogen. In this study was non-isothermal and non-adiabatic model considering linear driving force(LDF) model and Langmuir-Freundlich adsorption isotherm considered to compare between prediction and experimental data.

In-situ TiO2 Formation and Performance on Ceramic Membranes in Photocatalytic Membrane Reactor (광촉매 반응기용 세라믹 막에의 TiO2 층 형성과 성능평가)

  • Ahmad, Rizwan;Kim, Jin Kyu;Kim, Jong Hak;Kim, Jeonghwan
    • Membrane Journal
    • /
    • v.27 no.4
    • /
    • pp.328-335
    • /
    • 2017
  • Fabricating photocatalytic composite membrane with a mesoporous and tailored morphological structure would have significant implication for environmental remediation. In this study, we reported hybrid $TiO_2$ immobilized photocatalytic membrane and its application for the treatment of dye solution. Photocatalytic film with high porosity and homogeneity was fabricated by graft copolymer as polymer template. Hybridization of membrane filtration with photocatalysis was successfully achieved by photocatalytic membrane reactor developed. Result showed that membrane permeability was significantly reduced after immobilizing the $TiO_2$ film on bare $Al_2O_3$ support. The membrane characterization indicated that well organized $TiO_2$ film was successfully formed on $Al_2O_3$ support. Benefiting from the controlled morphology of $TiO_2$ film, the composite membrane exhibited almost complete degradation of organic dye within 5 h of filtration under UV illumination. Langmuir-Hinshelwood model explained degradation of organic dye. First-order rate constant was approximately six times with $TiO_2$ immobilized composite ceramic membrane, higher than the one with the bare $Al_2O_3$ support (0.0081 vs. $0.0013min^{-1}$).

Interactions between Hydrodenitrogenation of Pyridine and Hydrodeoxygenation of m-Cresol over sulfided CoMo/γ-Al2O3 Catalyst (황화 CoMo/γ-Al2O3 촉매상에서 수첨탈질반응과 수첨탈산소 반응의 상호작용)

  • Kim, Hak-Soo;Park, Hea-Kyung;Kim, Kyung-Lim
    • Applied Chemistry for Engineering
    • /
    • v.2 no.2
    • /
    • pp.108-118
    • /
    • 1991
  • Interactions between pyridine hydrodenitrogenation (HDN) and m-cresol hydrodeoxygenation(HDO), and the kinetic analysis were studied over sulfided $CoMo/{\gamma}-Al_2O_3$ catalyst at the range of temperatures between 473 K and 723 K, the total pressures between $10{\times}10^5Pa$ and $50{\times}10^5Pa$, and the contact times between 0.0125 g-cat. hr/ml-feed and 0.03g-cat. hr/ml-feed. HDN of pyridine and HDO of m-cresol were inhibited by each other and the inhibition effect of HDO by pyridine is higher than that of HDN by m-cresol. But reactivity of m-cresol is higher than that of pyridine. The rate equations of pyridine and m-cresol were given to be ${\gamma}_{HDN}=k_{HDN}{\cdot}K_pC_p/(1+K_cC_c+K_pC_p)$ and ${\gamma}_{HDO}=k_{HDO}{\cdot}K_cC_c/(1+K_cC_c+K_pC_p)$ in terms of Langmuir-Hinshellwood-Hougen-Watson model. At each temperature, reaction rate constants and adsorption equilibrium constants were determined and activation energies of pyridine HDN and m-cresol HDO are 13.83kcal/mol, respectively and the heat of adsorption are -6.458 and -5.045kcal/mol, respectively.

  • PDF