• Title/Summary/Keyword: Langevin type vibrator

Search Result 19, Processing Time 0.026 seconds

Elliptical Trajectory Analysis of Ultrasonic Linear Motor using ANSYS (ANSYS를 이용한 초음파 리니어 모터의 타원궤적 해석)

  • Choi, Myeong-Il;Park, Tae-Gone;Kim, Myong-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.11a
    • /
    • pp.292-295
    • /
    • 2002
  • Transducer for linear ultrasonic motor with symmetric and anti-symmetric modes was studied. The transducer was composed of two Langevin-type vibrators that cross at right angles with each other at tip. In order to excite two vibration modes, two Langevin-type vibrators must have 90-degree phase difference with each other. As a result, tip of transducers moves in elliptical motion. In this paper, elliptical trajectory of transducer was analyzed by employing the finite element method.

  • PDF

Changes of Vibrational characteristics due to the spaces of the Langevin type vibrators (란쥬반형 진동자의 형상에 따른 진동특성 변화)

  • Park, Min-Ho;Jeong, Dong-Seok;Park, Tae-Gone;Kwon, Oh-Young
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.05c
    • /
    • pp.97-102
    • /
    • 2002
  • Bolt-tightened Langevin type vibrators using longitudinal mode of bar were designed and fabricated. In order to amplify the displacement of the tip of the vibrators, stacked ceramics were used and five different shapes of the horns were designed and fabricated. Resonant frequencies and vibrational characteristics of vibrators and horns were analyzed by ANSYS(finite element analysis computer program), and the displacements of tips of the horns were measured. As results, when the number of the stacked ceramics were increased, the displacements of the tips were increased and the driving voltages were decreased. Step1 horn(BLT-Stl) showed maximum displacement of 36.92[${\mu}m$] at 36.7[kHz] with 45[Vrms] and 0.11[A]. The displacement amplification ratio was about 5.2. But, the stress of step1 horn was concentrated on intersection, where two diameters meet. To lessen the stress, step3 shaped horn is recommended.

  • PDF

Design and FEM Analysis of Langevin Type Ultrasonic Vibrator (란쥬반형 초음파 진동자의 설계와 유한요소 해석)

  • 박민호
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.04a
    • /
    • pp.525-528
    • /
    • 2000
  • Piezoelectric ceramics can provide electro-mechanical transduction with high stresses but low displacement. To obtain larger displacements, several mechanical amplifying structures have been used. High alternating displacements can be obtained using resonant structure. In this paper, we designed three kinds of the bolt-tightened Langevin type ultrasonic vibrators whose resonant frequencies are 30[kHz], 40[kHz]. FEM(Finite Element Methode) was employed to calculated the resonant frequencies and maximum displacements of designed vibrators. The designed resonant frequencies and computer calculated frequencies were coincided. When input voltages were increased, maximum displacements were also raised. ANSYS was used to find resonant frequencies and calculate displacements of vibrators.

  • PDF

A Study on The Driving Characteristics of Ultrasonic Linear Motor Using Symmetric And Anti-Symmetirc Resonance Modes (대칭-비대칭 공진모드를 이용한 초음파 리니어 모터의 구동특성 연구)

  • Choi, Myeong-Il;Bae, Seok-Myeong;Park, Tae-Gone
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.11
    • /
    • pp.1962-1966
    • /
    • 2007
  • Transducer for ultrasonic linear motor with the symmetric and anti-symmetric modes was studied. The ultrasonic linear motor consists of two Langevin type piezoelectric vibrators that cross at right angles with each other in tip. In order to excite symmetric and anti-symmetric resonance modes, the transducer must have a phase shift of 90 degree in space and time. Therefore, the tip of transducer moves on an elliptical motion. In this paper, the finite element analysis was used to optimize dimension and displacement of the transducer. The ultrasonic motor was fabricated using the simulated result and the driving characteristics were measured. No-load velocity was 0.28[m/s] and the maximum efficiency was 30[%] in resonance frequency.

Design and FEA of Ultrasonic Linear Motor Using Two Langevin Piezoelectirc Vibrator (2개의 란쥬반형 압전 진동자를 이용한 초음파 리니어 모터의 설계와 유한요소해석)

  • 최명일;박태곤;정현호;이재형;정영호
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.8
    • /
    • pp.669-675
    • /
    • 2003
  • Transducer for ultrasonic linear motor with symmetric and anti- symmetric modes was studied. The ultrasonic linear motor consists of two Langevin type piezoelectric vibrators that cross at right angles with each other in tip. In order to excite symmetric and anti-symmetric modes, the transducer must have a phase shift of 90 degree in space and time. As a result, the tip of transducer moves on an elliptical motion. In this paper, the finite element analysis was used to optimize dimension and displacement of the transducer.

Suggestion of an experimental method for optimization of flange point of a bolt-clamped Langevin-type ultrasonic transducer (볼트 체결형 란주반 초음파 트랜스듀서의 프렌지 포인트 최적화를 위한 실험적 방법 제안)

  • Kim, Jungsoon;Kim, Haeun;Kim, Moojoon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.40 no.4
    • /
    • pp.270-277
    • /
    • 2021
  • In the power ultrasound fields, the flange position for fixing the transducer is an important factor influencing on electro-mechanical efficiency of the transducer. We suggested a practical method that can determine the installation position of the flange for different resonance modes of the bolt-clamped type Langevin ultrasonic transducer. A semicircular wedge-shaped jig was manufactured and moved along the lateral surface of the transducer. The vibration characteristics were examined after a constant pressure was applied to the semicircular wedge-shaped jig. By observing the change of the input admittance of the transducer depending on the position of the pressure application, the optimum position for the flange installation could be determined. The resonant modes of the transducer were calculated by a Mason's equivalent circuit, and the particle velocity distribution for each resonance mode was calculated by a transmission line model. Since the optimum positions determined from an experimental result show a good correspondence with the node positions of the vibration modes calculated by the transmission line model, the validity of the suggested method was verified.

A Study on the Characteristics of Ultrasonic Linear Motor Using Piezoelectirc Ceramics (압전세라믹을 이용한 초음파 리니어 모터의 특성연구)

  • Choi, Myeong-Il;Jeong, Dong-Seok;Chong, Hyon-Ho;Lee, Jae-Hyung;Park, Tae-Gone
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07b
    • /
    • pp.664-668
    • /
    • 2003
  • Transducer for ultrasonic linear motor with the symmetric and anti-symmetric modes was studied. The ultrasonic linear motor consists of two Langevin type piezoelectric vibrators that cross at right angles with each other in tip. In order to excite symmetric and anti-symmetric modes, the transducer must have a phase shift of 90 degree in space and time. Therefore, the tip of transducer moves on an elliptical motion. In this paper, the finite element analysis was used to optimize dimension and displacement of the transducer. The ultrasonic motor was fabricated using the simulated result and the driving characteristics were measured. No-load velocity was 0.28[m/s] and the maximum efficiency was 30[%] in resonance frequency.

  • PDF

Measurement of the self-radiation impedance of an ultrasonic transducer with a square vibrating surface (정방형 방사면을 갖는 초음파 진동자의 자기방사임피던스 측정)

  • Kim, Jungsoon;Kim, Moojoon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.36 no.2
    • /
    • pp.108-114
    • /
    • 2017
  • We have experimentally analyzed the self-radiation impedance of an ultrasonic transducer with a square radiation surface that is used as a vibrator in underwater ultrasonic detection systems. The radiation reactance and the radiation resistance were measured in the range from 1 to 3 of ka that is the product of a wave number and a length of the edge of the square vibrator. By comparing the measured results with those of theoretical calculation of the radiation impedance using a series, we confirmed the validity of the experimental method and experimentally confirmed the variation trend in the radiation impedance of the square radiation surface.

Finite Element Analysis for the Development of Bone Surgery Piezoelectric Ultrasonic Medical Device and its Experimental Verification (골수술용 압전형 초음파 의료기기 개발을 위한 유한요소해석 및 이의 실험적 검증)

  • Song, Tae-Ha;Lee, Jung-Ho;Choi, Jong Kyun;Lee, Hee Won
    • Journal of Biomedical Engineering Research
    • /
    • v.43 no.5
    • /
    • pp.319-330
    • /
    • 2022
  • In this study, the optimal driving frequency was derived through finite element analysis (FEA) to optimize the developed piezoelectric ultrasonic medical devices(PUMD) for bone surgery. The core of the PUMD is the piezoelectric ceramic (PZT), which is a vibrator that generates vibration energy. The piezoelectric ceramic shows the maximum current value with respect to the input voltage at the resonance frequency, which generates the maximum mechanical vibration. In the past, various studies have been conducted related to the analysis of PUMD, but most of the research so far has been limited to free vibration analysis. However, in order to derive the accurate resonant frequency, the initial stress generated by bolt tightening in the bolt-clamped Langevin type transducer (BLT) must be considered. In this study, after designing a PUMD, the driving performance according to the bolt tightening value was analyzed through FEA, and this was experimentally verified. First, the resonance mode and frequency response were confirmed through modal and harmonic analysis at 20-40 kHz, which is known as the optimal driving frequency band of PUMD for bone surgery. In addition, the design of the PUMD was confirmed by checking the mechanical behavior of the tip and the piezoelectric ceramic at the resonant frequency. Consequentially, the characteristic evaluation was performed, and it was confirmed that the resonant frequency result derived through the FEA was reasonable. Through this study, we presented a more rational FEA method than before for BLT transducers. We expect that this will shorten the time and cost of developing a PUMD, and will enable the development of more stable and high-quality products.