• Title/Summary/Keyword: Lane Utilization Factor

Search Result 5, Processing Time 0.019 seconds

Variation of Lane Utlization at Urban Signalized Intersections (신호교차로에서의 차선별 이용률의 산정 모형)

  • 오영태;심대영
    • Journal of Korean Society of Transportation
    • /
    • v.12 no.1
    • /
    • pp.117-132
    • /
    • 1994
  • Drivers select approach lane according to various traffic situations as well as their destination. This behavior affects the utilization of lanes and capacity analysis at urban signalized intersections. This paper presents the concept, behavior of lane utilization, and the lane utilization factors which included in the study. Preparation of Korean Highway Capacity Manual (1992). Lane utilization is affected by various traffic and geometric factors which are roadway side friction, median friction, and number of lanes, etc. and it converges to an equal utilization as the degree of saturation (V/C ratio) increase. Lane utilization factor is suggested by the degree of saturation and the number of lanes, and it is presented in this paper.

  • PDF

Estimating Utilization Factor of Left Turn Lane for Through Traffic, Intersection Capacity, and Optimum Signal Timings (직진교통의 좌회전차선 이용률 추정과 교차로용량 및 최적신호등시간 산정)

  • 도철웅
    • Journal of Korean Society of Transportation
    • /
    • v.1 no.1
    • /
    • pp.56-63
    • /
    • 1983
  • Intersection control has dual-purposes; increasing capacity and reducing delay. The primary concern of efficient intersection control under oversaturated condition as in Korea is to increase capacity. Prevailing intersection operation technique permits thru traffic to utilize left turn lane, because the intersection without left turn pocket has left turn signal interval. In this situation, it seems not to be valid to calculate capacity, delay, and signal timings by conventional methods. By critical lane technique, capacity increases as cycle length increases. However, when thru traffic utilize LT lane, the capacity varies according to LT volume, LT interval as well as cycle length, which implies that specific cycle length and LT interval exist to maximize capacity for given LT volume. The study is designed is designed to calculate utilization factors of LT lane for thru traffic and capacities, and identify signal timings to yield maximum capacity. The experimental design involved has 3 variables; 1)LT volumes at each approach(20-300 vph), 2)cycle lengths (60-220 sec), and 3)LT intervals(2.6-42 sec) for one scenario of isolated intersection crossing two 6-lanes streets. For LT volume of 50-150 vph, capacity calculated by using the utilization factor is about 25% higher than that by critical lane method. The range of optimum cycle length to yield maximum capapcity for LT volume less than 120 vph is 140-180 sec, and increases as LT volume increases. The optimum LT interval to yield maximum capacity is longer than the intrval necessary to accommodate LT volume at saturation flow rate.

  • PDF

Estimation of Lane Utilization Adjustment Factors for Signalized Intersections Adjacent to an Off-ramp-Street Junction (연결로-일반도로 합류부와 인접한 신호교차로의 차로이용률 계수 산출)

  • Chae, Chandle;Jung, Dongwoo;Kim, Youngho
    • Journal of Korean Society of Transportation
    • /
    • v.31 no.5
    • /
    • pp.71-78
    • /
    • 2013
  • This paper investigated the influences of ramp traffic flow on the lane utilization for signalized intersection approaches which are adjacent to an off-ramp-street junction. The statistical test showed a correlation between lane utilization and the ramp traffic flow. As the ramp traffic flow increases, the left lanes are less utilized and the right lanes are more utilized. The lane utilization factors are calculated by applying traffic data collected from the Seoul Metropolitan area. The utilization factors are 1.113 for 2 lanes, 1.124 for 3 lanes, and 1.131 for 4 lanes. The lane utilization factors proposed in the paper show higher values than those in current Korea Highway Capacity Manual (KHCM) under the conditions that the number of lanes is 2 or 3. However, the lane utilization factor for 4 lanes in the paper shows lower value than in KHCM. The ramp traffic flow causes more utilization of the right lanes than at normal signalized intersections and the extent gets larger as the number of lanes decreases. Based on the results of the paper, the lane utilization factors at signalized intersection approaches should be revised and reasonable capacity should be recalculated if the signalized intersection is adjacent to an off-ramp-street junction.

Review of lane utilization factor in KHCM (한국 도로용량편람의 차로이용계수에 대한 고찰)

  • 정회빈
    • Proceedings of the KOR-KST Conference
    • /
    • 1999.10a
    • /
    • pp.229-234
    • /
    • 1999
  • 본 논문은 한국도로용량편람의 신호교차로 용량분석에서 차로이용계수를 적용하는 방법을 신호교차로 용량분석의 절차와 이동류 구분 측면에서 살펴보았다. 고찰한 결과 차로이용계수의 개선방향은 다음과 같다. 첫째, v/c 비에 따라 차로이용계수를 적용함으로써, 반복계산이 불필요하게 발생한다. 따라서 편람 개정시 이러한 반복계산을 없애는 값을 산정해야 한다. 둘째, 차로이용계수는 직진 전용차로를 통과하는 직진교통량에 대해서만 적용해야 한다. 실제 현장에서 교통량 조사 상황을 고려해보면, 상당히 불합리한 값을 도출한 것이다. 따라서 차로이용계수를 적용하는 이동류를 정확히 설명하고 그 문제점을 분명히 해야 한다. 셋째, 차로이용계수는 직진 이동류에 대해서만 있다. 우리 나라 전역에 있는 소규모 교차로를 고려해 볼 때, 차로이용계수는 다양한 차로군(lane group)에 대하여 추가적으로 조사연구가 필요하다.

  • PDF

Comparison of Capacities at an Intersection with Lagging or Leading Left Turn Green Phase (직진(直進)과 좌회전(左回轉) 신호순서(信號順序)에 따른 교차로(交叉路) 용량분석(容量分析)과 신호시간(信號時間) 연구(硏究))

  • Do, Cheol Ung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.3 no.3
    • /
    • pp.19-26
    • /
    • 1983
  • Through traffic utilization of left turn lane constitutes an unique traffic operation at an intersection. Consequently, due to the provision as of current practice, conventional methods which estimate traffic volume and intersection capacity by lane would not be valid for design of signal timings. Through traffic utilization factor of left turn lane is affected by left turn volume and signal timings. The primary purpose of this study is to compare the results from leading left turn green phasing scheme with those from previously studied lagging left turn green phasing scheme in terms of utilization factor and intersection capacity by various left turn volume and signal timings, and thereby optimum signal timing to maximize the capacity at given left turn volume. Leading left turn green phasing increases capacity by 10~15 % as compared with that for current lagging left turn green phasing scheme. The range of optimum cycle length for left turn volume about 150 vph is 180~200 second. This cycle length range and left turn interval are longer than those for the lagging left turn green phasing scheme.

  • PDF