• 제목/요약/키워드: Lane Method

검색결과 490건 처리시간 0.024초

Model-Based Robust Lane Detection for Driver Assistance

  • Duong, Tan-Hung;Chung, Sun-Tae;Cho, Seongwon
    • 한국멀티미디어학회논문지
    • /
    • 제17권6호
    • /
    • pp.655-670
    • /
    • 2014
  • In this paper, we propose an efficient and robust lane detection method for detecting immediate left and right lane boundaries of the lane in the roads. The proposed method are based on hyperbolic lane model and the reliable line segment clustering. The reliable line segment cluster is determined from the most probable cluster obtained from clustering line segments extracted by the efficient LSD algorithm. Experiments show that the proposed method works robustly against lanes with difficult environments such as ones with occlusions or with cast shadows in addition to ones with dashed lane marks, and that the proposed method performs better compared with other lane detection methods on an CMU/VASC lane dataset.

차선-곡률 방법 : 새로운 지역 장애물 회피 방법 (Lane-Curvature Method : A New Method for Local Obstacle Avoidance)

  • 고낙용;이상기
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제48권3호
    • /
    • pp.313-320
    • /
    • 1999
  • The Lane-Curvature Method(LCM) presented in this paper is a new local obstacle avoidance method for indoor mobile robots. The method combines Curvature-Velocith Method(CVM) with a new directional method called the Lane Method. The Lane Method divides the environment into lanes taking the information on obstacles and desired heading of the robot into account ; then it chooses the best lane to follow to optimize travel along a desired heading. A local heading is then calculated for entering and following the best lane, and CVM uses this heading to determine the optimal translational and rotational velocity space methods, LCM yields safe collision-free motion as well as smooth motion taking the dynamics of the robot Xavier, show the efficiency of the proposed method.

  • PDF

차선 변화벡터와 카디널 스플라인을 이용한 곡선 차선 검출방법 (A Curve Lane Detection Method using Lane Variation Vector and Cardinal Spline)

  • 허환;한기태
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제3권7호
    • /
    • pp.277-284
    • /
    • 2014
  • 본 논문에서는 카메라 파라미터가 필요 없는 역 투시변환 영상에 차선 변화벡터와 카디널 스플라인을 이용하여 변화에 강인한 곡선 차선 검출 방법을 제안한다. 이 방법은 역 투시변환과 차선 필터의 전처리 과정이 적용된 영상의 시작 S 프레임과 그 다음 S+1 프레임에서 차선 후보 영역을 설정하여 차선 영역을 검출하고, 검출된 차선영역을 이용하여 차선 변화벡터를 계산한 결과를 가지고 이후의 프레임에서 차선이 위치할 지점을 예측한다. 이후에 예측된 차선 위치에서부터 스캔 영역을 설정하고 이 영역 내에서 새로운 차선 위치를 검출하며, 검출된 차선 위치를 이용해 차선 변화벡터를 갱신하고, 차선 영역 내의 제어 점들에 카디널 스플라인을 적용하여 차선을 검출한다. 제안하는 방법은 차선의 형태 변화에 강인한 곡선 차선 검출방법이지만 직선 차선에도 잘 적응됨을 보였으며 한 프레임을 처리하는 데 약 20ms 정도의 양호한 차선검출 속도를 보였다.

A Lane Based Obstacle Avoidance Method for Mobile Robot Navigation

  • Ko, Nak-Yong;Reid G. Simmons;Kim, Koung-Suk
    • Journal of Mechanical Science and Technology
    • /
    • 제17권11호
    • /
    • pp.1693-1703
    • /
    • 2003
  • This paper presents a new local obstacle avoidance method for indoor mobile robots. The method uses a new directional approach called the Lane Method. The Lane Method is combined with a velocity space method i.e., the Curvature-Velocity Method to form the Lane-Curvature Method (LCM). The Lane Method divides the work area into lanes, and then chooses the best lane to follow to optimize travel along a desired goal heading. A local heading is then calculated for entering and following the best lane, and CVM uses this local heading to determine the optimal translational and rotational velocities, considering some physical limitations and environmental constraint. By combining both the directional and velocity space methods, LCM yields safe collision-free motion as well as smooth motion taking the physical limitations of the robot motion into account.

차선인식을 위한 무인자동차의 차량제어 및 모델링에 관한 연구 (Research of the Unmanned Vehicle Control and Modeling for Lane Tracking)

  • 김상겸;임하영;김정하
    • 한국자동차공학회논문집
    • /
    • 제11권6호
    • /
    • pp.213-221
    • /
    • 2003
  • This paper describes a method of lane tracking by means of a vision system which includes vehicle control and modeling. Lane tracking is considered one of the important technologies in an unmanned vehicle and mobile robot system. The current position and condition of the vehicle are calculated from an image processing method by a CCD camera. We deal with lane tracking as follows. First, vehicle control is included in the road model, and lateral and longitudinal controls. Second, the image processing method deals with the lane detection method, image processing algerian, and filtering method. Finally, this paper proposes a correct method for lane detection through a vehicle test by wireless data communication.

차선 이탈 경고 시스템의 성능 검증을 위한 가상의 오염 차선 이미지 및 비디오 생성 방법 (Virtual Contamination Lane Image and Video Generation Method for the Performance Evaluation of the Lane Departure Warning System)

  • 곽재호;김회율
    • 한국자동차공학회논문집
    • /
    • 제24권6호
    • /
    • pp.627-634
    • /
    • 2016
  • In this paper, an augmented video generation method to evaluate the performance of lane departure warning system is proposed. In our system, the input is a video which have road scene with general clean lane, and the content of output video is the same but the lane is synthesized with contamination image. In order to synthesize the contamination lane image, two approaches were used. One is example-based image synthesis, and the other is background-based image synthesis. Example-based image synthesis is generated in the assumption of the situation that contamination is applied to the lane, and background-based image synthesis is for the situation that the lane is erased due to aging. In this paper, a new contamination pattern generation method using Gaussian function is also proposed in order to produce contamination with various shape and size. The contamination lane video can be generated by shifting synthesized image as lane movement amount obtained empirically. Our experiment showed that the similarity between the generated contamination lane image and real lane image is over 90 %. Futhermore, we can verify the reliability of the video generated from the proposed method through the analysis of the change of lane recognition rate. In other words, the recognition rate based on the video generated from the proposed method is very similar to that of the real contamination lane video.

Lane Detection and Tracking Using Classification in Image Sequences

  • Lim, Sungsoo;Lee, Daeho;Park, Youngtae
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제8권12호
    • /
    • pp.4489-4501
    • /
    • 2014
  • We propose a novel lane detection method based on classification in image sequences. Both structural and statistical features of the extracted bright shape are applied to the neural network for finding correct lane marks. The features used in this paper are shown to have strong discriminating power to locate correct traffic lanes. The traffic lanes detected in the current frame is also used to estimate the traffic lane if the lane detection fails in the next frame. The proposed method is fast enough to apply for real-time systems; the average processing time is less than 2msec. Also the scheme of the local illumination compensation allows robust lane detection at nighttime. Therefore, this method can be widely used in intelligence transportation systems such as driver assistance, lane change assistance, lane departure warning and autonomous vehicles.

스마트카를 위한 차선변경 인식시스템 (A Lane Change Recognition System for Smart Cars)

  • 이웅진;양정하;곽노준
    • 제어로봇시스템학회논문지
    • /
    • 제21권1호
    • /
    • pp.46-51
    • /
    • 2015
  • In this paper, we propose a vision-based method to recognize lane changes of an autonomous vehicle. The proposed method is based on six states of driving situations defined by the positional relationship between a vehicle and its nearest lane detected. With the combinations of these states, the lane change is detected. The proposed method yields 98% recognition accuracy of lane change even in poor situations with partially invisible lanes.

도심 자율주행을 위한 비전기반 차선 추종주행 실험 (Experiments of Urban Autonomous Navigation using Lane Tracking Control with Monocular Vision)

  • 서승범;강연식;노치원;강성철
    • 제어로봇시스템학회논문지
    • /
    • 제15권5호
    • /
    • pp.480-487
    • /
    • 2009
  • Autonomous Lane detection with vision is a difficult problem because of various road conditions, such as shadowy road surface, various light conditions, and the signs on the road. In this paper we propose a robust lane detection algorithm to overcome shadowy road problem using a statistical method. The algorithm is applied to the vision-based mobile robot system and the robot followed the lane with the lane following controller. In parallel with the lane following controller, the global position of the robot is estimated by the developed localization method to specify the locations where the lane is discontinued. The results of experiments, done in the region where the GPS measurement is unreliable, show good performance to detect and to follow the lane in complex conditions with shades, water marks, and so on.

무인차량 적용을 위한 차선강조기법 기반의 차선 인식 (Lane Recognition Using Lane Prominence Algorithm for Unmanned Vehicles)

  • 백준영;이민철
    • 제어로봇시스템학회논문지
    • /
    • 제16권7호
    • /
    • pp.625-631
    • /
    • 2010
  • This paper proposes lane recognition algorithm using lane prominence technique to extract lane candidate. The lane prominence technique is combined with embossing effect, lane thickness check, and lane extraction using mask. The proposed lane recognition algorithm consists of preprocessing, lane candidate extraction and lane recognition. First, preprocessing is executed, which includes gray image acquisition, inverse perspective transform and gaussian blur. Second, lane candidate is extracted by using lane prominence technique. Finally, lane is recognized by using hough transform and least square method. To evaluate the proposed lane recognition algorithm, this algorithm was applied to the detection of lanes in the rainy and night day. The experiment results showed that the proposed algorithm can recognize lane in various environment. It means that the algorithm can be applied to lane recognition to drive unmanned vehicles.