• 제목/요약/키워드: Lane Extraction

검색결과 59건 처리시간 0.024초

특징점 추적을 이용한 끼어들기 위반차량 검지 시스템 (Lane Violation Detection System Using Feature Tracking)

  • 이희신;이준환
    • 한국ITS학회 논문지
    • /
    • 제8권2호
    • /
    • pp.36-44
    • /
    • 2009
  • 본 논문에서는 특징점 추적을 이용하여 끼어들기 위반차량을 검지할 수 있는 끼어들기 위반차량 검지 시스템을 제안한다. 제안된 끼어들기 위반차량 검지 시스템의 전체적인 알고리즘은 특징 추출, 추적대상 차량의 특징점 등록 및 추적, 끼어들기 위반차량 검지 등의 세 단계로 구성된다. 특징 추출 단계에서는 실시간 처리가 가능한 특징점 추출 알고리즘을 이용하여 입력 영상에서 특징점을 추출한다. 추출된 특징점들은 다시 추적대상 특징점을 선정하고 등록된 특징점을 정규화 된 교차 상관관계(normalized cross correlation:NCC)를 이용하여 추적한다. 마지막으로 추적된 특징점들의 정보를 이용하여 끼어들기 위반여부를 최종 검지한다. 제안한 시스템을 끼어들기 금지구간에서 취득한 영상을 사용하여 실험한 결과 정인식률 99.09%와 오류율 0.9%의 뛰어난 성능을 보였고 실시간처리가 가능한 초당 34.48프레임의 빠른 처리속도를 얻을 수 있었다.

  • PDF

Model-Based Robust Lane Detection for Driver Assistance

  • Duong, Tan-Hung;Chung, Sun-Tae;Cho, Seongwon
    • 한국멀티미디어학회논문지
    • /
    • 제17권6호
    • /
    • pp.655-670
    • /
    • 2014
  • In this paper, we propose an efficient and robust lane detection method for detecting immediate left and right lane boundaries of the lane in the roads. The proposed method are based on hyperbolic lane model and the reliable line segment clustering. The reliable line segment cluster is determined from the most probable cluster obtained from clustering line segments extracted by the efficient LSD algorithm. Experiments show that the proposed method works robustly against lanes with difficult environments such as ones with occlusions or with cast shadows in addition to ones with dashed lane marks, and that the proposed method performs better compared with other lane detection methods on an CMU/VASC lane dataset.

영상 클러스터링과 HSV 컬러 모델을 이용한 차선 검출 전처리 기법 (Preprocessing Technique for Lane Detection Using Image Clustering and HSV Color Model)

  • 최나래;최상일
    • 한국멀티미디어학회논문지
    • /
    • 제20권2호
    • /
    • pp.144-152
    • /
    • 2017
  • Among the technologies for implementing autonomous vehicles, advanced driver assistance system is a key technology to support driver's safe driving. In the technology using the vision sensor having a high utility, various preprocessing methods are used prior to feature extraction for lane detection. However, in the existing methods, the unnecessary lane candidates such as cars, lawns, and road separator in the road area are false positive. In addition, there are cases where the lane candidate itself can not be extracted in the area under the overpass, the lane within the dark shadow, the center lane of yellow, and weak lane. In this paper, we propose an efficient preprocessing method using k-means clustering for image division and the HSV color model. When the proposed preprocessing method is applied, the true positive region is maximally maintained during the lane detection and many false positive regions are removed.

Lane Detection and Tracking Using Classification in Image Sequences

  • Lim, Sungsoo;Lee, Daeho;Park, Youngtae
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제8권12호
    • /
    • pp.4489-4501
    • /
    • 2014
  • We propose a novel lane detection method based on classification in image sequences. Both structural and statistical features of the extracted bright shape are applied to the neural network for finding correct lane marks. The features used in this paper are shown to have strong discriminating power to locate correct traffic lanes. The traffic lanes detected in the current frame is also used to estimate the traffic lane if the lane detection fails in the next frame. The proposed method is fast enough to apply for real-time systems; the average processing time is less than 2msec. Also the scheme of the local illumination compensation allows robust lane detection at nighttime. Therefore, this method can be widely used in intelligence transportation systems such as driver assistance, lane change assistance, lane departure warning and autonomous vehicles.

전방의 차량포착을 위한 연속영상의 대상영역을 제한한 효율적인 차선 검출 (Efficient Lane Detection for Preceding Vehicle Extraction by Limiting Search Area of Sequential Images)

  • 한상훈;조형제
    • 정보처리학회논문지B
    • /
    • 제8B권6호
    • /
    • pp.705-717
    • /
    • 2001
  • 이 논문에서는 카메라로 연속으로 촬영한 일련의 그레이레벨 영상으로부터 전방의 차량을 포착하기 위한 빠른 차선검출방법을 제안한다. 개별 영상에서 가려지지 않는 제한된 영역을 대상으로 차선의 위치를 검출하고, 에지 영상을 이용하여 차선의 기울기를 구한다. 이를 근거로 차량이 존재할 가능성이 있는 관심영역을 구하고 그 영역 내에서 에지 성분을 이용하여 구조적 방법으로 전방 차량의 위치를 포착한다. 제안된 방식의 효과를 검증하기 위해 노트북 PC와 PC용 CCD 카메라로 도로에서의 영상을 촬영하고 차선검출알고리즘을 적용한 처리 시간, 정확도, 차량검지 등의 결과를 보인다.

  • PDF

최적화된 Hough 변환에 근거한 효율적인 차선 인식 (An Efficient Lane Detection Based on the Optimized Hough Transform)

  • 박재현;이학만;조재현;차의영
    • 한국정보통신학회논문지
    • /
    • 제10권2호
    • /
    • pp.406-412
    • /
    • 2006
  • 본 논문에서는 차선 추출을 위해서 OHT(Optimized Hough Transform) 알고리듬을 제안한다. 입력 영상을 그레이 영상으로 변환하고 변환된 그레이 영상은 수평 투영을 통해 주변 배경 영역과 도로 영역으로 분리된다. 분리된 도로 영역에서 OHT(Optimized Hough Transform) 알고리듬을 적용한다. OHT(Optimized Hough Transform) 알고리듬은 다음과 같이 특징지어진다. 첫째, 윤곽선 방향각을 이용해서 차선후보 픽셀을 최소화하였으며, 둘째, 좌우 차선의 범위는 제한된 ${\theta}$값으로서 정의하였다. 실험 결과, 제안한 알고리듬이 기존의 Hough Transform보다 훨씬 효율적임을 알 수 있었다.

EDF와 하프변환 기반의 차선관련 정보 검출 (Extraction of Lane-Reined Information Based on an EDF and Hough Transform)

  • 이준웅;이기용
    • 한국자동차공학회논문집
    • /
    • 제13권3호
    • /
    • pp.48-57
    • /
    • 2005
  • This paper presents a novel algorithm in order to extract lane-related information based on machine vision techniques. The algorithm makes up for the weak points of the former method, the Edge Distribution Function(EDF)-based approach, by introducing a Lane Boundary Pixel Extractor (LBPE) and the well-known Hough Transform(HT). The LBPE that serves as a filter to extract pixels expected to be on lane boundaries enhances the robustness of machine vision, and provides its results to the HT implementation and EDF construction. The HT forms the accumulator arrays and extracts the lane-related parameters composed of orientation and distance. Furthermore, as the histogram of edge magnitude with respect to edge orientation angle, the EDF has peaks at the orientations corresponding to lane slopes on the perspective image domain. Therefore, by fusing the results from the EDF and the HT the proposed algorithm improves the confidence of the extracted lane-related information. The system shows successful results under various degrees of illumination.

카메라와 도로평면의 기하관계를 이용한 모델 기반 곡선 차선 검출 (Model-based Curved Lane Detection using Geometric Relation between Camera and Road Plane)

  • 장호진;백승해;박순용
    • 제어로봇시스템학회논문지
    • /
    • 제21권2호
    • /
    • pp.130-136
    • /
    • 2015
  • In this paper, we propose a robust curved lane marking detection method. Several lane detection methods have been proposed, however most of them have considered only straight lanes. Compared to the number of straight lane detection researches, less number of curved-lane detection researches has been investigated. This paper proposes a new curved lane detection and tracking method which is robust to various illumination conditions. First, the proposed methods detect straight lanes using a robust road feature image. Using the geometric relation between a vehicle camera and the road plane, several circle models are generated, which are later projected as curved lane models on the camera images. On the top of the detected straight lanes, the curved lane models are superimposed to match with the road feature image. Then, each curve model is voted based on the distribution of road features. Finally, the curve model with highest votes is selected as the true curve model. The performance and efficiency of the proposed algorithm are shown in experimental results.

Lane Detection Based on Inverse Perspective Transformation and Kalman Filter

  • Huang, Yingping;Li, Yangwei;Hu, Xing;Ci, Wenyan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제12권2호
    • /
    • pp.643-661
    • /
    • 2018
  • This paper proposes a novel algorithm for lane detection based on inverse perspective transformation and Kalman filter. A simple inverse perspective transformation method is presented to remove perspective effects and generate a top-view image. This method does not need to obtain the internal and external parameters of the camera. The Gaussian kernel function is used to convolute the image to highlight the lane lines, and then an iterative threshold method is used to segment the image. A searching method is applied in the top-view image obtained from the inverse perspective transformation to determine the lane points and their positions. Combining with feature voting mechanism, the detected lane points are fitted as a straight line. Kalman filter is then applied to optimize and track the lane lines and improve the detection robustness. The experimental results show that the proposed method works well in various road conditions and meet the real-time requirements.

형태학과 색상 정보를 이용한 차선 인식 알고리즘 (Lane Detection Algorithm using Morphology and Color Information)

  • 배찬수;이종화;조상복
    • 대한전자공학회논문지SD
    • /
    • 제48권6호
    • /
    • pp.15-24
    • /
    • 2011
  • 지능형 자동차 시스템에 대한 인식이 높아지면서 차선 획득 알고리즘에 대해 많이 연구되고 있다. 일반적인 차선 인식에서 사용하는 경계선 추출을 사용하는 방법은 도로에서의 차선 검출에 좋은 결과를 가져 올 수 있다. 하지만 도로에 그림자, 혹은 가로 선 같은 다른 경계선이 검출 될 수 있다. 본 논문에서는 이와 같은 문제를 해결하기 위해 형태학적 연산을 적용하여 차선에 대한 정보를 추출하였다. 또한 HSV(Hue, Saturation, Value) 칼라 모델을 적용하여 색상에 대한 정보를 이용함으로써 한번 더 차선의 정보를 추출하였다. 추출된 차선의 후보들을 이용하여 Hough 변환을 통해 차선이 존재할 가능성이 높은 차선 검출 영역을 설정하고, 이러한 차선 검출 영역 내에서 차선을 추출하는 방식을 사용함으로써 효과적으로 차선을 검출할 수 있었다.