• Title/Summary/Keyword: Landslide analysis

Search Result 431, Processing Time 0.035 seconds

Landslide Susceptibility Analysis of Clicap, Indonesia

  • Kim, I. J.;Lee, S.;Choi, J. W.;Soedradjat, Gatot Moch
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.141-143
    • /
    • 2003
  • The aim of this study is to evaluate the susceptibility of landslides at Clicap area, Indonesia , using a Geographic Information System (GIS). Landslide locations were identified from field surveys. The topographic and geological map were collected and constructed into a spatial database using GIS. The factors that influence landslide occurrence, such as slope, aspect and curvature of topography, were calculated from the topographic database and lihology and fault was extracted from the geological database. Then landslide susceptibility was analyzed using the landslide-occurrence factors by likelihood methods. The results of the analysis were verified using the landslide location data. The GIS was used to analyze the vast amount of data efficiently . The results can be used to reduce associated hazards, and to plan land use and construction.

  • PDF

Application of New Back Analysis Method for Landslide around Portal (터널 갱구부 주변의 산사태를 고려한 역해석법에 관한 검토)

    • Tunnel and Underground Space
    • /
    • v.8 no.1
    • /
    • pp.46-52
    • /
    • 1998
  • The author conducted new back analysis method using monitoring data to a landslide which occurred around portal. In this case, because the tunnel being located under the sliding plane of the landslide, calculated value from the ordinary back analysis in which considered only stress release by the tunnel excavation didn't fit the measured value. Then, in the new method, a body force as the movement of the landslide mass was added to the ordinary back analysis and good results were obtained. Furthermore, the author carried out stability analysis of the landslide with the data of the back analysis and examined the loosened area and decreasing og the sliding plane strength due to the tunnel excavation.

  • PDF

The Effect of Landslide Factor and Determination of Landslide Vulnerable Area Using GIS and AHP (GIS와 AHP를 이용한 산사태 취약지 결정 및 유발인자의 영향)

  • Yang, In-Tae;Chun, Ki-Sun;Park, Jae-Hoon
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.14 no.1 s.35
    • /
    • pp.3-12
    • /
    • 2006
  • Kangwondo area is mountainous and landslide happens easily during the rainy period in summer time. Especially, when there is torrential downpour caused by the unusual weather change, there will be greater possibility to see landslide. It is very difficult to analyze and study a natural phenomenon like the landslide because there are so many factors behind it. And the way to conduct the analysis is also very complicated. However, if GIS is used, we can classify and analyze data efficiently by modeling the real phenomenon with a computer. Based upon the analysis on the causes of landslide in the areas where it occurred in the past, therefore, this study shows several factors leading to landslide and contains the GIS database categorized by grade and stored in the computer. In order to analyze the influence of every factor causing landslide, we calculated the rates of weight by AHP and evaluated landslide vulnerability in the study area by using GIS. As a result of such analysis, we found that the forest factor has most potential influences among other factors in landslide.

  • PDF

Life Risk Assessment of Landslide Disaster in Jinbu Area Using Logistic Regression Model (로지스틱 회귀분석모델을 활용한 평창군 진부 지역의 산사태 재해의 인명 위험 평가)

  • Rahnuma, Bintae Rashid Urmi;Al, Mamun;Jang, Dong-Ho
    • Journal of The Geomorphological Association of Korea
    • /
    • v.27 no.2
    • /
    • pp.65-80
    • /
    • 2020
  • This paper deals with risk assessment of life in a landslide-prone area by a GIS-based modeling method. Landslide susceptibility maps can provide a probability of landslide prone areas to mitigate or proper control this problems and to take any development plan and disaster management. A landslide inventory map of the study area was prepared based on past historical information and aerial photography analysis. A total of 550 landslides have been counted at the whole study area. The extracted landslides were randomly selected and divided into two different groups, 50% of the landslides were used for model calibration and the other were used for validation purpose. Eleven causative factors (continuous and thematic) such as slope, aspect, curvature, topographic wetness index, elevation, forest type, forest crown density, geology, land-use, soil drainage, and soil texture were used in hazard analysis. The correlation between landslides and these factors, pixels were divided into several classes and frequency ratio was also extracted. Eventually, a landslide susceptibility map was constructed using a logistic regression model based on entire events. Moreover, the landslide susceptibility map was plotted with a receiver operating characteristic (ROC) curve and calculated the area under the curve (AUC) and tried to extract a success rate curve. Based on the results, logistic regression produced an 85.18% accuracy, so we believed that the model was reliable and acceptable for the landslide susceptibility analysis on the study area. In addition, for risk assessment, vulnerability scale were added for social thematic data layer. The study area predictive landslide affected pixels 2,000 and 5,000 were also calculated for making a probability table. In final calculation, the 2,000 predictive landslide affected pixels were assumed to run. The total population causalities were estimated as 7.75 person that was relatively close to the actual number published in Korean Annual Disaster Report, 2006.

A Production Method of Landslide Hazard Map by Combining Logistic Regression Analysis and AHP(Analytical Hierarchy Process) Approach Selecting Target Sites for Non-point Source Pollution Management Using Analytic Hierarchy Process

  • Lee, Yong-Joon;Park, Geun-Ae;Kim, Seong-Joon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.49 no.3
    • /
    • pp.63-68
    • /
    • 2007
  • The LRA(Logistic Regression Analysis) conducts a quantitative analysis by collecting a lot of samples and the AHP(Analytic Hierarchy Program) makes use of expert decision influenced by subjective judgment to a certain degree. This study is to suggest a combination method in mapping landslide hazard by giving equal weight for the result of LRA and AHP. Topographic factors(slope, aspect, elevation), soil dram, soil depth and land use were adopted to classify landslide hazard areas. The three methods(LRA, AHP, the combined approach) was applied to a $520km^2$ region located in the middle of South Korea which have occurred 39 landslides during 1999 and 2003. The suggested method showed 58.9% matching rate for the real landslide sites comparing with the classified areas of high-risk landslide While LRA and AHP Showed 46.1% and 48.7% matching rates respectively. Further studies are recommended to find the optimal combining weight of LRA and AHP with more landslide data.

Development of Investigation and Analysis Technique to Landslides and Its Application (산사태 조사.해석 기법의 개발 및 적용)

  • Kim, Kyeong-Su;Song, Young-Suk;Chae, Byung-Gon;Cho, Yong-Chan;Jeong, Gyo-Cheol
    • The Journal of Engineering Geology
    • /
    • v.18 no.1
    • /
    • pp.69-81
    • /
    • 2008
  • Landslide researches are divided to a method of interrelationship for various factors, method of predicting landslide possibility, and method of estimating landslide risk which are occurring landslides in the natural slope. Most of landslides occurred in natural slope are caused by a heavy rainfall in summer season. Weathered soil layer located in upper side of rock mass was occurred. As well as, they are announced to have an influence to geometry, geology, soil characteristics, and precipitation in the natural slope. In order to investigate and interpret the variety of landslides from field investigation to risk analysis, landslide analysis process due to geotechnical and geological opinions are systematically demanded. In this research, the study area is located in Macheon area, Gyeongsangnam-do and performed the landslide investigation. From the results of landslide investigation and analysis, optimized standard model based on natural landslide is proposed to high technical method of landslide investigation and interpretation.

Landslide Susceptibility Analysis Using Bayesian Network and Semantic Technology (시맨틱 기술과 베이시안 네트워크를 이용한 산사태 취약성 분석)

  • Lee, Sang-Hoon
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.18 no.4
    • /
    • pp.61-69
    • /
    • 2010
  • The collapse of a slope or cut embankment brings much damage to life and property. Accordingly, it is very important to analyze the spatial distribution by calculating the landslide susceptibility in the estimation of the risk of landslide occurrence. The heuristic, statistic, deterministic, and probabilistic methods have been introduced to make landslide susceptibility maps. In many cases, however, the reliability is low due to insufficient field data, and the qualitative experience and knowledge of experts could not be combined with the quantitative mechanical?analysis model in the existing methods. In this paper, new modeling method for a probabilistic landslide susceptibility analysis combined Bayesian Network with ontology model about experts' knowledge and spatial data was proposed. The ontology model, which was made using the reasoning engine, was automatically converted into the Bayesian Network structure. Through conditional probabilistic reasoning using the created Bayesian Network, landslide susceptibility with uncertainty was analyzed, and the results were described in maps, using GIS. The developed Bayesian Network was then applied to the test-site to verify its effect, and the result corresponded to the landslide traces boundary at 86.5% accuracy. We expect that general users will be able to make a landslide susceptibility analysis over a wide area without experts' help.

Preparation of Landslide Hazard Map Using the Analysis of Historical Data and GIS Method (GIS 기법 및 발생자료 분석을 이용한 산사태 위험지도 작성)

  • Yun, Hong-Sik;Lee, Dong-Ha;Suh, Yong-Cheol
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.12 no.4
    • /
    • pp.59-73
    • /
    • 2009
  • In this study, we performed a GIS-based landslide hazard analysis by employing historical landslide data in Korea, coupling with geomorphological, geological, climatic and rainfall data. Based on 596 landslide data from 2001 to 2003, the correlations between landslide occurrence and various factors (elevation, slope angle, slope aspect, soil type and rainfall) that affect the occurrence were estimated by the statistical analysis, zonal statistics. The weights and hazard indices of 6 raster layers were derived from the estimated correlations in order to generate a landslide hazard map by applying raster calculation technique. As a result of this study, GIS technique can be used effectively to incorporate the landslide hazard contributions from various data sets simultaneously.

  • PDF

LANDSLIDE SUSCEPTIBILITY ANALYSIS USING GIS AND ARTIFICIAL NEURAL NETWORK

  • Lee, Moung-Jin;Won, Joong-Sun;Lee, Saro
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.256-272
    • /
    • 2002
  • The purpose of this study is to develop landslide susceptibility analysis techniques using artificial neural network and to apply the newly developed techniques to the study area of Boun in Korea. Landslide locations were identified in the study area from interpretation of aerial photographs, field survey data, and a spatial database of the topography, soil type, timber cover, geology and land use. The landslide-related factors (slope, aspect, curvature, topographic type, soil texture, soil material, soil drainage, soil effective thickness, timber type, timber age, and timber diameter, timber density, geology and land use) were extracted from the spatial database. Using those factors, landslide susceptibility was analyzed by artificial neural network methods. For this, the weights of each factor were determinated in 3 cases by the backpropagation method, which is a type of artificial neural network method. Then the landslide susceptibility indexes were calculated and the susceptibility maps were made with a GIS program. The results of the landslide susceptibility maps were verified and compared using landslide location data. A GIS was used to efficiently analyze the vast amount of data, and an artificial neural network was turned out be an effective tool to maintain precision and accuracy.

  • PDF

Landslide susceptibility mapping using Logistic Regression and Fuzzy Set model at the Boeun Area, Korea (로지스틱 회귀분석과 퍼지 기법을 이용한 산사태 취약성 지도작성: 보은군을 대상으로)

  • Al-Mamun, Al-Mamun;JANG, Dong-Ho
    • Journal of The Geomorphological Association of Korea
    • /
    • v.23 no.2
    • /
    • pp.109-125
    • /
    • 2016
  • This study aims to identify the landslide susceptible zones of Boeun area and provide reliable landslide susceptibility maps by applying different modeling methods. Aerial photographs and field survey on the Boeun area identified landslide inventory map that consists of 388 landslide locations. A total ofseven landslide causative factors (elevation, slope angle, slope aspect, geology, soil, forest and land-use) were extracted from the database and then converted into raster. Landslide causative factors were provided to investigate about the spatial relationship between each factor and landslide occurrence by using fuzzy set and logistic regression model. Fuzzy membership value and logistic regression coefficient were employed to determine each factor's rating for landslide susceptibility mapping. Then, the landslide susceptibility maps were compared and validated by cross validation technique. In the cross validation process, 50% of observed landslides were selected randomly by Excel and two success rate curves (SRC) were generated for each landslide susceptibility map. The result demonstrates the 84.34% and 83.29% accuracy ratio for logistic regression model and fuzzy set model respectively. It means that both models were very reliable and reasonable methods for landslide susceptibility analysis.