• Title/Summary/Keyword: Landsat-8 OLI

Search Result 49, Processing Time 0.026 seconds

Generation of Time-Series Data for Multisource Satellite Imagery through Automated Satellite Image Collection (자동 위성영상 수집을 통한 다종 위성영상의 시계열 데이터 생성)

  • Yunji Nam;Sungwoo Jung;Taejung Kim;Sooahm Rhee
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.5_4
    • /
    • pp.1085-1095
    • /
    • 2023
  • Time-series data generated from satellite data are crucial resources for change detection and monitoring across various fields. Existing research in time-series data generation primarily relies on single-image analysis to maintain data uniformity, with ongoing efforts to enhance spatial and temporal resolutions by utilizing diverse image sources. Despite the emphasized significance of time-series data, there is a notable absence of automated data collection and preprocessing for research purposes. In this paper, to address this limitation, we propose a system that automates the collection of satellite information in user-specified areas to generate time-series data. This research aims to collect data from various satellite sources in a specific region and convert them into time-series data, developing an automatic satellite image collection system for this purpose. By utilizing this system, users can collect and extract data for their specific regions of interest, making the data immediately usable. Experimental results have shown the feasibility of automatically acquiring freely available Landsat and Sentinel images from the web and incorporating manually inputted high-resolution satellite images. Comparisons between automatically collected and edited images based on high-resolution satellite data demonstrated minimal discrepancies, with no significant errors in the generated output.

Analyzing Impact of the Effect of Greenbelts on the Land Surface Temperature in Seoul Metropolitan Area (수도권 그린벨트가 지표면 온도에 미치는 영향 분석)

  • Kim, Hee-Jae
    • Journal of Urban Science
    • /
    • v.9 no.1
    • /
    • pp.17-31
    • /
    • 2020
  • This study aims to analyze the relations among greenbelt, urban land surface temperature empirically in order to assess the environmental effects of the greenbelt in the Seoul metropolitan area, objectively. For this purpose, this study conducts an empirical analysis of impacts of greenbelt on urban land surface temperature using a multiple-regression model. The main data employed in the analysis include real-time air pollution data, Landsat 8-OLI Landsat imagery data, KLIS data and Jip-gye-gu data. The major findings are summarized as follows. NDVI has a negative (-) correlation with the land surface temperature, and the urban temperature is high in areas with poor vegetation. The land surface temperature is low in residential or commercial areas, while the temperature is high in industrial areas. The temperature is low in green fields, open spaces, and river areas. it is found that the urban land surface temperature is low in the greenbelt zone. In the greenbelt zone, there is an effect that reduces the land surface temperature by 1% on average, as compared to that at the center of the Seoul metropolitan area. Especially, the center of the Seoul metropolitan area, in a range from 0.6% to 1.9% of the average temperature, the temperature gets lower up to approximately 3km from the greenbelt boundary.

A Study on the Possibility of Short-term Monitoring of Coastal Topography Changes Using GOCI-II (GOCI-II를 활용한 단기 연안지형변화 모니터링 가능성 평가 연구)

  • Lee, Jingyo;Kim, Keunyong;Ryu, Joo-Hyung
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.5_2
    • /
    • pp.1329-1340
    • /
    • 2021
  • The intertidal zone, which is a transitional zone between the ocean and the land, requires continuous monitoring as various changes occur rapidly due to artificial activity and natural disturbance. Monitoring of coastal topography changes using remote sensing method is evaluated to be effective in overcoming the limitations of intertidal zone accessibility and observing long-term topographic changes in intertidal zone. Most of the existing coastal topographic monitoring studies using remote sensing were conducted through high spatial resolution images such as Landsat and Sentinel. This study extracted the waterline using the NDWI from the GOCI-II (Geostationary Ocean Color Satellite-II) data, identified the changes in the intertidal area in Gyeonggi Bay according to various tidal heights, and examined the utility of DEM generation and topography altitude change observation over a short period of time. GOCI-II (249 scenes), Sentinel-2A/B (39 scenes), Landsat 8 OLI (7 scenes) images were obtained around Gyeonggi Bay from October 8, 2020 to August 16, 2021. If generating intertidal area DEM, Sentinel and Landsat images required at least 3 months to 1 year of data collection, but the GOCI-II satellite was able to generate intertidal area DEM in Gyeonggi Bay using only one day of data according to tidal heights, and the topography altitude was also observed through exposure frequency. When observing coastal topography changes using the GOCI-II satellite, it would be a good idea to detect topography changes early through a short cycle and to accurately interpolate and utilize insufficient spatial resolutions using multi-remote sensing data of high resolution. Based on the above results, it is expected that it will be possible to quickly provide information necessary for the latest topographic map and coastal management of the Korean Peninsula by expanding the research area and developing technologies that can be automatically analyzed and detected.

Parallel Processing of K-means Clustering Algorithm for Unsupervised Classification of Large Satellite Imagery (대용량 위성영상의 무감독 분류를 위한 K-means 군집화 알고리즘의 병렬처리)

  • Han, Soohee
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.35 no.3
    • /
    • pp.187-194
    • /
    • 2017
  • The present study introduces a method to parallelize k-means clustering algorithm for fast unsupervised classification of large satellite imagery. Known as a representative algorithm for unsupervised classification, k-means clustering is usually applied to a preprocessing step before supervised classification, but can show the evident advantages of parallel processing due to its high computational intensity and less human intervention. Parallel processing codes are developed by using multi-threading based on OpenMP. In experiments, a PC of 8 multi-core integrated CPU is involved. A 7 band and 30m resolution image from LANDSAT 8 OLI and a 8 band and 10m resolution image from Sentinel-2A are tested. Parallel processing has shown 6 time faster speed than sequential processing when using 10 classes. To check the consistency of parallel and sequential processing, centers, numbers of classified pixels of classes, classified images are mutually compared, resulting in the same results. The present study is meaningful because it has proved that performance of large satellite processing can be significantly improved by using parallel processing. And it is also revealed that it easy to implement parallel processing by using multi-threading based on OpenMP but it should be carefully designed to control the occurrence of false sharing.

Evaluating the Contribution of Spectral Features to Image Classification Using Class Separability

  • Ye, Chul-Soo
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.1
    • /
    • pp.55-65
    • /
    • 2020
  • Image classification needs the spectral similarity comparison between spectral features of each pixel and the representative spectral features of each class. The spectral similarity is obtained by computing the spectral feature vector distance between the pixel and the class. Each spectral feature contributes differently in the image classification depending on the class separability of the spectral feature, which is computed using a suitable vector distance measure such as the Bhattacharyya distance. We propose a method to determine the weight value of each spectral feature in the computation of feature vector distance for the similarity measurement. The weight value is determined by the ratio between each feature separability value to the total separability values of all the spectral features. We created ten spectral features consisting of seven bands of Landsat-8 OLI image and three indices, NDVI, NDWI and NDBI. For three experimental test sites, we obtained the overall accuracies between 95.0% and 97.5% and the kappa coefficients between 90.43% and 94.47%.

Crop Classification for Inaccessible Areas using Semi-Supervised Learning and Spatial Similarity - A Case Study in the Daehongdan Region, North Korea - (준감독 학습과 공간 유사성을 이용한 비접근 지역의 작물 분류 - 북한 대홍단 지역 사례 연구 -)

  • Kwak, Geun-Ho;Park, No-Wook;Lee, Kyung-Do;Choi, Ki-Young
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.5_2
    • /
    • pp.689-698
    • /
    • 2017
  • In this paper, a new classification method based on the combination of semi-supervised learning with spatial similarity of adjacent pixels is presented for crop classification in inaccessible areas. Iterative classification based on semi-supervised learning is applied to extract reliable training data from both the initial classification result with a small number of training data, and classification results of adjacent pixels are also considered to extract new training pixels with less uncertainty. To evaluate the applicability of the proposed method, a case study of the classification of field crops was carried out using multi-temporal Landsat-8 OLI acquired in the Daehongdan region, North Korea. From a case study, the misclassification of crops and forests, and isolated pixels in the initial classification result were greatly reduced by applying the proposed semi-supervised learning method. In addition, the combination of classification results of adjacent pixels for the extraction of new training data led to the great reduction of both misclassification results and isolated pixels, compared to the initial classification and traditional semi-supervised learning results. Therefore, it is expected that the proposed method would be effectively applied to classify areas in which it is difficult to collect sufficient training data.

Parallel Processing of k-Means Clustering Algorithm for Unsupervised Classification of Large Satellite Images: A Hybrid Method Using Multicores and a PC-Cluster (대용량 위성영상의 무감독 분류를 위한 k-Means Clustering 알고리즘의 병렬처리: 다중코어와 PC-Cluster를 이용한 Hybrid 방식)

  • Han, Soohee;Song, Jeong Heon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.37 no.6
    • /
    • pp.445-452
    • /
    • 2019
  • In this study, parallel processing codes of k-means clustering algorithm were developed and implemented in a PC-cluster for unsupervised classification of large satellite images. We implemented intra-node code using multicores of CPU (Central Processing Unit) based on OpenMP (Open Multi-Processing), inter-nodes code using a PC-cluster based on message passing interface, and hybrid code using both. The PC-cluster consists of one master node and eight slave nodes, and each node is equipped with eight multicores. Two operating systems, Microsoft Windows and Canonical Ubuntu, were installed in the PC-cluster in turn and tested to compare parallel processing performance. Two multispectral satellite images were tested, which are a medium-capacity LANDSAT 8 OLI (Operational Land Imager) image and a high-capacity Sentinel 2A image. To evaluate the performance of parallel processing, speedup and efficiency were measured. Overall, the speedup was over N / 2 and the efficiency was over 0.5. From the comparison of the two operating systems, the Ubuntu system showed two to three times faster performance. To confirm that the results of the sequential and parallel processing coincide with the other, the center value of each band and the number of classified pixels were compared, and result images were examined by pixel to pixel comparison. It was found that care should be taken to avoid false sharing of OpenMP in intra-node implementation. To process large satellite images in a PC-cluster, code and hardware should be designed to reduce performance degradation caused by file I / O. Also, it was found that performance can differ depending on the operating system installed in a PC-cluster.

A Convolutional Neural Network Model with Weighted Combination of Multi-scale Spatial Features for Crop Classification (작물 분류를 위한 다중 규모 공간특징의 가중 결합 기반 합성곱 신경망 모델)

  • Park, Min-Gyu;Kwak, Geun-Ho;Park, No-Wook
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.6_3
    • /
    • pp.1273-1283
    • /
    • 2019
  • This paper proposes an advanced crop classification model that combines a procedure for weighted combination of spatial features extracted from multi-scale input images with a conventional convolutional neural network (CNN) structure. The proposed model first extracts spatial features from patches with different sizes in convolution layers, and then assigns different weights to the extracted spatial features by considering feature-specific importance using squeeze-and-excitation block sets. The novelty of the model lies in its ability to extract spatial features useful for classification and account for their relative importance. A case study of crop classification with multi-temporal Landsat-8 OLI images in Illinois, USA was carried out to evaluate the classification performance of the proposed model. The impact of patch sizes on crop classification was first assessed in a single-patch model to find useful patch sizes. The classification performance of the proposed model was then compared with those of conventional two CNN models including the single-patch model and a multi-patch model without considering feature-specific weights. From the results of comparison experiments, the proposed model could alleviate misclassification patterns by considering the spatial characteristics of different crops in the study area, achieving the best classification accuracy compared to the other models. Based on the case study results, the proposed model, which can account for the relative importance of spatial features, would be effectively applied to classification of objects with different spatial characteristics, as well as crops.

Validation of Surface Reflectance Product of KOMPSAT-3A Image Data Using RadCalNet Data (RadCalNet 자료를 이용한 다목적실용위성 3A 영상 자료의 지표 반사도 성과 검증)

  • Lee, Kiwon;Kim, Kwangseob
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.2_1
    • /
    • pp.167-178
    • /
    • 2020
  • KOMPSAT-3A images have been used in various kinds of applications, since its launch in 2015. However, there were limits to scientific analysis and application extensions of these data, such as vegetation index estimation, because no tool was developed to obtain the surface reflectance required for analysis of the actual land environment. The surface reflectance is a product of performing an absolute atmospheric correction or calibration. The objective of this study is to quantitatively verify the accuracy of top-of-atmosphere reflectance and surface reflectance of KOMPSAT-3A images produced from the OTB open-source extension program, performing the cross-validation with those provided by a site measurement data of RadCalNet, an international Calibration/Validation (Cal/Val) portal. Besides, surface reflectance was obtained from Landsat-8 OLI images in the same site and applied together to the cross-validation process. According to the experiment, it is proven that the top-of-atmosphere reflectance of KOMPSAT-3A images differs by up to ± 0.02 in the range of 0.00 to 1.00 compared to the mean value of the RadCalNet data corresponding to the same spectral band. Surface reflectance in KOMPSAT-3A images also showed a high degree of consistency with RadCalNet data representing the difference of 0.02 to 0.04. These results are expected to be applicable to generate the value-added products of KOMPSAT-3A images as analysisready data (ARD). The tools applied in thisstudy and the research scheme can be extended as the new implementation of each sensor model to new types of multispectral images of compact advanced satellites (CAS) for land, agriculture, and forestry and the verification method, respectively.

Satellite Monitoring of Reclamation and Land Cover Change Neighboring Tidal Flats on the West Coast of North Korea: Comparative Approaches Using Artificial Intelligence and the Normalized Difference Water Index

  • Sanae Kang;Chul-Hee Lim
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.4
    • /
    • pp.409-423
    • /
    • 2023
  • North Korea is carrying out reclamation activities in tidal flat areas distributed throughout the west coast. Previousremote sensing research on North Korean tidal flats either failsto reflect recent trends or focuses on identifying and analyzing tidal flats. Thisstudy aimsto quantify the impact of recent reclamation activitiesin North Korea's coastal areas and contribute knowledge useful for determining the best remote sensing methods for coastal areas with limited accessibility, such as those in North Korea. Using Landsat-8 OLI images from 2014-2022, we analyzed land cover changesin an area on the west coast of Pyeonganbuk-do where reclamation activities are underway. Unsupervised classification using the normalized difference water index and the random forest classification technique were each used to divide the study area into classification groups, and changes in their areas over time were analyzed. The resultsshow a clear decrease in the water area and a tendency to increase cultivated area,supporting the evidence that North Korea'sreclamation isfor agricultural land expansion.Along coasts behind seawalls, the water area decreased by nearly half, and the cultivated area increased by over 2,300%, indicating significant changes and highlighting the anthropogenic nature of the cover changes due to reclamation. Both methods demonstrated high accuracy, making them suitable for detecting cover changes caused by reclamation. It is expected that further quality research will be conducted through the use of high-resolution satellite images and by combining data from multiple satellites in the future.