• Title/Summary/Keyword: Landsat-8 위성

Search Result 167, Processing Time 0.032 seconds

Analysis of Areas Vulnerable to Urban Heat Island Using Hotspot Analysis - A Case Study in Jeonju City, Jeollabuk-do - (핫스팟 분석을 이용한 도시열섬 취약지 특성 분석 - 전주시를 대상으로 -)

  • Ko, Young-Joo;Cho, Ki-Hwan
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.48 no.5
    • /
    • pp.67-79
    • /
    • 2020
  • Plans to mitigate overheating in urban areas requires the identification of the characteristics of the thermal environment of the city. The key information is the distribution of higher and lower temperatures (referred to as "hotspot" or "coldspot", respectively) in the city. This study aims to identify the areas within Jeonju City that are suffering from increasing land surface temperatures (LST) and the factors linked to such this phenomenon. To identify the hot and cold spots, Local Moran's I and Getis-Ord Gi* were calculated for the LST based on 2017 images taken using the thermal band of the Landsat 8 satellite. Hotspot analysis revealed that hotspot regions, (the areas with a high concentration of Land Surface Temperature) are located in the old town area and in industrial districts. To figure out the factors linked to the hotspots, a correlation analysis, and a regression analysis taking into account environmental covariates including Normalized Difference Vegetation Index (NDVI) and land cover. The values of NDVI showed that it had the strongest effect on the lowering LSTs. The results of this study are expected to provide directions for urban thermal environment designing and policy development to mitigate the urban heat island effect in the future.

Prediction of Potential Habitat and Damage Amount of Rare·Endemic Plants (Sophora Koreensis Nakai) Using NBR and MaxEnt Model Analysis - For the Forest Fire Area of Bibongsan (Mt.) in Yanggu - (NBR과 MaxEnt 모델 분석을 활용한 희귀특산식물(개느삼) 분포 및 피해량 예측 - 양구 비봉산 산불피해지를 대상으로-)

  • Yun, Ho-Geun;Lee, Jong-Won;An, Jong-Bin;Yu, Seung-Bong;Bak, Gi-Ppeum;Shin, Hyun-Tak;Park, Wan-Geun;Kim, Sang-Jun
    • Korean Journal of Plant Resources
    • /
    • v.35 no.2
    • /
    • pp.169-182
    • /
    • 2022
  • This study was conducted to predict the distribution of rare·endemic plants (Sophora koreensis Nakai) in the border forests where wildfire damage occurred and to quantify the damage. For this purpose, we tried to derive more accurate results through forest area damage (NBR) according to the Burn severity of wildfires, damage by tree species type (Vegetation map), and MaxEnt model. For Burn severity analysis, satellite imagery (Landsat-8) was used to analyze Burn severity (ΔNBR2016-2015) and to derive the extent of damage. To prepare the Vegetation map, the land cover map prepared by the Ministry of Environment, the Vegetation map prepared by the Korea Forest Service, and the vegetation survey conducted by itself were conducted to prepare the clinical map before and after the forest fire. Lastly, for MaxEnt model analysis, the AUC value was derived by using the habitat coordinates of Sophora koreensis Nakai based on the related literature and self-report data. As a result of combining the Maxent model analysis data with the Burn severity data, it was confirmed that 45.9% of the 44,760 m2 of habitat (predicted) area of Sophora koreensis Nakai in the wildfire damaged area or 20,552 m2, was damaged.

Determination of Fire Severity and Deduction of Influence Factors Through Landsat-8 Satellite Image Analysis - A Case Study of Gangneung and Donghae Forest Fires - (Landsat-8 위성영상 분석을 통한 산불피해 심각도 판정 및 영향 인자 도출 - 강릉, 동해 산불을 사례로 -)

  • Soo-Dong Lee;Gyoung-Sik Park;Chung-Hyeon Oh;Bong-Gyo Cho;Byeong-Hyeok Yu
    • Korean Journal of Environment and Ecology
    • /
    • v.38 no.3
    • /
    • pp.277-292
    • /
    • 2024
  • In order to manage large-scale forest fires concentrated in Gangwon-do and Gyeongsangbuk-do with severe topographical heterogeneity, a decision-making process through efficient and rapid damage assessment using satellite images is essential. Accordingly, this study targets a large-scale forest fire that ignited in Gangneung and the Donghae, Gangwon-do on March 5, 2022, and was extinguished around 19:00 on March 8, to estimate the fire severity using dNBR and derive environmental factors that affect the grade. As environmental factors, we quantified the regular vegetation index representing vegetation or fuel type, the forest index that classifies tree species, the regular moisture index representing moisture content, and DEM in relation to topography, and then analyzed the correlation with the fire severity. In terms of fire severity, the widest range was 'Unbured' at 52.4%, followed by low severity at 42.9%, medium-low severity at 4.3%, and medium-high severity at 0.4%. Environmental factors showed a negative correlation with dNDVI and dNDWI, and a positive correlation with slope. Regarding vegetation, the differences between coniferous, broad-leaved, and other groups in dNDVI, dNIWI, and slope, which were analyzed to affect the fire severity, were analyzed to be significant with p-value < 2.2e-16. In particular, the difference between coniferous and broad-leaved forests was clear, and it was confirmed that coniferous forest suffered more damage than broad-leaved forest due to the higher fire severity in the Gangwon-do region, including Pinus densiflora, which are dominant species, as well as P. koraiensis, P. rigida and P. thunbergii.

Development of GIS Based Wetland Inventory and Its Use (GIS에 기반한 습지목록의 제작과 활용)

  • Yi, Gi-Chul;Lee, Jae-Won;Kim, Yong-Suk
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.13 no.1
    • /
    • pp.50-61
    • /
    • 2010
  • This study was carried out to find out the way to build a comprehensive wetland ecosystem database using the technique of remote sensing and Geographic Information System. A Landsat TM image (taken in Oct. 30, 2002), Kompsat-2 images (Jan. 17, 2008 & Nov. 20, 2008), LiDAR(Mar. 1, 2009) were used for the primary source for the image analysis. Field surveys were conducted March to August of 2009 to help image analysis and examine the results. An actual wetland vegetation map was created based on the field survey. Satellite images were analyzed by unsupervised and supervised classification methods and finally categorized into such classes as Phragmites australis community, mixed community, sand beach, Scirpus planiculmis community and non-vegetation intertidal area. The map of wetland productivity was developed based on the productivity of Phragmites australis and the relationship to the proximity of adjacent water bodies. The developed 3 dimensional wetland map showed such several potential applications as flood inundation, birds flyway viewsheds and benthos distribution. Considering these results, we concluded that it is possible to use the remote sensing and GIS techniques for producing wetland ecosystem spatial database and these techniques are very effective for the development of the national wetland inventory in Korea.

3D Modeling Approaches in Estimation of Resource and Production of Musan Iron Mine, North Korea (3차원 모델링을 활용한 북한 무산광산일대의 자원량 및 생산량 추정)

  • Bae, Sungji;Yu, Jaehyung;Koh, Sang-Mo;Heo, Chul-Ho
    • Economic and Environmental Geology
    • /
    • v.48 no.5
    • /
    • pp.391-400
    • /
    • 2015
  • Korea is a global steel producer and a major consumer while iron ore producing is very low compared to the demand. On the other hand, North Korea holds tremendous amount of iron reserves and, however, its producing rate is limited. Moreover, the data regarding mineral resources of North Korea is very limited and uncertain because of political isolation. This study estimated the amount of iron ore resource and production amount for the Musan Iron mine, the world-known open-pit mine of North Korea, using satellite imagery(Landsat MSS, ASTER) and digital maps between 1976 to 2007. As a result, the mining area of Musan mine was increased by $6.1km^2$ during the 30 years and the mining sector was estimated as $4.9km^2$. We estimated the iron resources and production amount of 0.7 and 0.2 billion metric tons, respectively based on 3D modeling and average iron ore density of Anshan formation in China. This amount indicates 8.1 million tons of annual average production and it coincides well with previous reports. We expect this study would be utilized significantly on inter-Korean exchange programs by providing trustable preliminary data.

Analysis of Surface Urban Heat Island and Land Surface Temperature Using Deep Learning Based Local Climate Zone Classification: A Case Study of Suwon and Daegu, Korea (딥러닝 기반 Local Climate Zone 분류체계를 이용한 지표면온도와 도시열섬 분석: 수원시와 대구광역시를 대상으로)

  • Lee, Yeonsu;Lee, Siwoo;Im, Jungho;Yoo, Cheolhee
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.5_3
    • /
    • pp.1447-1460
    • /
    • 2021
  • Urbanization increases the amount of impervious surface and artificial heat emission, resulting in urban heat island (UHI) effect. Local climate zones (LCZ) are a classification scheme for urban areas considering urban land cover characteristics and the geometry and structure of buildings, which can be used for analyzing urban heat island effect in detail. This study aimed to examine the UHI effect by urban structure in Suwon and Daegu using the LCZ scheme. First, the LCZ maps were generated using Landsat 8 images and convolutional neural network (CNN) deep learning over the two cities. Then, Surface UHI (SUHI), which indicates the land surface temperature (LST) difference between urban and rural areas, was analyzed by LCZ class. The results showed that the overall accuracies of the CNN models for LCZ classification were relatively high 87.9% and 81.7% for Suwon and Daegu, respectively. In general, Daegu had higher LST for all LCZ classes than Suwon. For both cities, LST tended to increase with increasing building density with relatively low building height. For both cities, the intensity of SUHI was very high in summer regardless of LCZ classes and was also relatively high except for a few classes in spring and fall. In winter the SUHI intensity was low, resulting in negative values for many LCZ classes. This implies that UHI is very strong in summer, and some urban areas often are colder than rural areas in winter. The research findings demonstrated the applicability of the LCZ data for SUHI analysis and can provide a basis for establishing timely strategies to respond urban on-going climate change over urban areas.

Application of Evaporative Stress Index (ESI) for Satellite-based Agricultural Drought Monitoring in South Korea (위성영상기반 농업가뭄 모니터링을 위한 Evaporative Stress Index (ESI)의 적용성 평가)

  • Yoon, Dong-Hyun;Nam, Won-Ho;Lee, Hee-Jin;Hong, Eun-Mi;Kim, Taegon;Kim, Dae-Eui;Shin, An-Kook;Svoboda, Mark D.
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.60 no.6
    • /
    • pp.121-131
    • /
    • 2018
  • Climate change has caused changes in environmental factors that have a direct impact on agriculture such as temperature and precipitation. The meteorological disaster that has the greatest impact on agriculture is drought, and its forecasts are closely related to agricultural production and water supply. In the case of terrestrial data, the accuracy of the spatial map obtained by interpolating the each point data is lowered because it is based on the point observation. Therefore, acquisition of various meteorological data through satellite imagery can complement this terrestrial based drought monitoring. In this study, Evaporative Stress Index (ESI) was used as satellite data for drought determination. The ESI was developed by NASA and USDA, and is calculated through thermal observations of GOES satellites, MODIS, Landsat 5, 7 and 8. We will identify the difference between ESI and other satellite-based drought assessment indices (Vegetation Health Index, VHI, Leaf Area Index, LAI, Enhanced Vegetation Index, EVI), and use it to analyze the drought in South Korea, and examines the applicability of ESI as a new indicator of agricultural drought monitoring.

Analysis of the Relationship between Three-Dimensional Built Environment and Urban Surface Temperature (도시의 3차원 물리적 환경변수와 지표온도의 관계 분석)

  • Li, Yige;Lee, Sugie;Han, Jaewon
    • Journal of Korea Planning Association
    • /
    • v.54 no.2
    • /
    • pp.93-108
    • /
    • 2019
  • This study examines the relationship between three-dimensional urban built environment and urban surface temperature using LANDSAT 8 satellite image data in Seoul city. The image was divided into 600m×600m grid units as an unit of analysis. Due to the high level of spatial dependency in surface temperature, this study uses spatial statistics to take into account spatial auto-correlation. The spatial error model shows the best goodness of fit. The analysis results show that the three-dimensional built environment and transport environment as well as natural environment have statistically significant associations with surface temperature. First, natural environment variables such as green space, streams and river, and average elevation show statistically significant negative association with surface temperature. Second, the building area shows a positive association with surface temperature. In addition, while sky view factor (SVF) has a positive association with surface temperature, surface roughness (SR) shows a negative association with it. Third, transportation related variables such as road density, railway density, and traffic volume show positive associations with surface temperature. Moreover, this study finds that SVF and SR have different effects on surface temperature in regard to the levels of total floor areas in built environment. The results indicate that interactions between floor area ratio (FAR) and three-dimensional built environmental variables such as SVF and SR should be considered to reduce urban surface temperature.

Assessment of Environmental Conservation Function using Changes of Land Use Area and Surface Temperature in Agricultural Field (용인시의 토지이용면적과 지표면 온도 변화를 이용한 환경보전 기능 변동 계량화)

  • Ko, Byong-Gu;Kang, Kee-Kyung;Hong, Suk-Young;Lee, Deog-Bae;Kim, Min-Kyeong;Seo, Myung-Chul;Kim, Gun-Yeob;Park, Kwang-Lai;Lee, Jung-Taek
    • Korean Journal of Environmental Agriculture
    • /
    • v.28 no.1
    • /
    • pp.1-8
    • /
    • 2009
  • This study was aimed at assess environmental conservation functions by analyzing the change of land use areas in agricultural fields between 1999 and 2006, and comparing land surface temperature distribution between 1994 and 2006 in Yongin city. Land use maps of Yongin city were obtained from soil maps for 1999, Quickbird satellite images(less than 1 m) and parcel map for 2006. The land use area for Yongin city was in the order of forest > paddy field > upland > residence & building in 1999, and forest > residence & building > paddy field > upland in 2006. Decrease of paddy and upland fields reduced 34% and 41% of the capability of agricultural multifunctionality as to environment including flood control, groundwater recharge, and air cooling. Land surface temperature(LST) was derived from Landsat TM thermal infrared band acquired in September of 1994 and 2006 and classified into three grades. The results impplied that green vegetation in agricultural field and forest play an important role to reduce land surface temperature in warm season.

Simulation Approach for the Tracing the Marine Pollution Using Multi-Remote Sensing Data (다중 원격탐사 자료를 활용한 해양 오염 추적 모의 실험 방안에 대한 연구)

  • Kim, Keunyong;Kim, Euihyun;Choi, Jun Myoung;Shin, Jisun;Kim, Wonkook;Lee, Kwang-Jae;Son, Young Baek;Ryu, Joo-Hyung
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.2_2
    • /
    • pp.249-261
    • /
    • 2020
  • Coastal monitoring using multiple platforms/sensors is a very important tools for accurately understanding the changes in offshore marine environment and disaster with high temporal and spatial resolutions. However, integrated observation studies using multiple platforms and sensors are insufficient, and none of them have been evaluated for efficiency and limitation of convergence. In this study, we aimed to suggest an integrated observation method with multi-remote sensing platform and sensors, and to diagnose the utility and limitation. Integrated in situ surveys were conducted using Rhodamine WT fluorescent dye to simulate various marine disasters. In September 2019, the distribution and movement of RWT dye patches were detected using satellite (Kompsat-2/3/3A, Landsat-8 OLI, Sentinel-3 OLCI and GOCI), unmanned aircraft (Mavic 2 pro and Inspire 2), and manned aircraft platforms after injecting fluorescent dye into the waters of the South Sea-Yeosu Sea. The initial patch size of the RWT dye was 2,600 ㎡ and spread to 62,000 ㎡ about 138 minutes later. The RWT patches gradually moved southwestward from the point where they were first released,similar to the pattern of tidal current flowing southwest as the tides gradually decreased. Unmanned Aerial Vehicles (UAVs) image showed highest resolution in terms of spatial and time resolution, but the coverage area was the narrowest. In the case of satellite images, the coverage area was wide, but there were some limitations compared to other platforms in terms of operability due to the long cycle of revisiting. For Sentinel-3 OLCI and GOCI, the spectral resolution and signal-to-noise ratio (SNR) were the highest, but small fluorescent dye detection was limited in terms of spatial resolution. In the case of hyperspectral sensor mounted on manned aircraft, the spectral resolution was the highest, but this was also somewhat limited in terms of operability. From this simulation approach, multi-platform integrated observation was able to confirm that time,space and spectral resolution could be significantly improved. In the future, if this study results are linked to coastal numerical models, it will be possible to predict the transport and diffusion of contaminants, and it is expected that it can contribute to improving model accuracy by using them as input and verification data of the numerical models.