• Title/Summary/Keyword: Landsat ETM+

Search Result 221, Processing Time 0.031 seconds

Vegetation Change Detection in the Sihwa Embankment using Multi-Temporal Satellite Data (다중시기 위성영상을 이용한 시화 방조제 내만 식생변화탐지)

  • Jeong, Jong-Chul;Suh, Young-Sang;Kim, Sang-Wook
    • Journal of Environmental Science International
    • /
    • v.15 no.4
    • /
    • pp.373-378
    • /
    • 2006
  • The western coast of South Korea is famous for its large and broad tidal lands. Nevertheless, land reclamation, which has been conducted on a large scale, such as Sihwa embankment construction project has accelerated coastal environmental changes in the embankment inland. For monitoring of environmental change, vegetation change detecting of the embankment inland were carried out and field survey data compared with Landsat TM, ETM+, IKONOS, and EOC satellite remotely sensed data. In order to utilize multi-temporal remotely sensed images effectively, all data set with pixel size were analyzed by same geometric correction method. To detect the tidal land vegetation change, the spectral characteristics and spatial resolution of Landsat TM and ETM+ images were analyzed by SMA(spectral mixture analysis). We obtained the 78.96% classification accuracy and Kappa index 0.2376 using March 2000 Landsat data. The SMA(spectral mixture analysis) results were considered with comparing of vegetation seasonal change detection method.

Runoff Curve Number Estimation for Cover and Treatment Classification of Satellite Image(II): - Application and Verification (위성영상 피복분류에 대한 CN값 산정(II): - 적용 및 검정 -)

  • Lee, Byong-Ju;Bae, Deg-Hyo;Jeong, Chang-Sam
    • Journal of Korea Water Resources Association
    • /
    • v.36 no.6
    • /
    • pp.999-1012
    • /
    • 2003
  • The objective of this study is to test the applicability of CN values suggested using land cover and treatment classification of satellite image. Applicability test is based on the comparison of observed effective rainfall and computed one. The 3 case study areas, where are the upstream of Gyeongan stage station, the upstream of Baekokpo stage station Pyungchang River basin, and the upstream of Koesan Dam, are selected to test the proposed CN values and the hydrologic and meteorologic data, Landsat-7 ETM of 2000, soil map of 1:50,000 are collected for the selected areas. The results show that the computed CN values for three study cases are 71, 63, 66, respectively, and the errors between observed and computed effective rainfall are within about 30%. It can be concluded that the proposed CN values from this study for land cover and treatment classification of satellite image not only provides more accurate results for the computation of effective rainfall, but also suggest the objective CN values and effective rainfall.

Monitoring suspended sediment distribution using Landsat TM/ETM+ data in coastal waters of Seamangeum, Korea

  • Min Jee-Eun;Ryu Joo-Hyung;P Shanmugam;Ahn Yu-Hwan;Lee Kyu-Sung
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.340-343
    • /
    • 2004
  • Since the tide embankment construction started in 1991, the coastal environment in and around the Saemangeum area has undergone changes rapidly, there is a need for monitoring the environmental change in this region. Owing to high temporal and spatial heterogeneity of the coastal ecosystem and processes as well as the expense with traditional filed sampling at discrete locations, satellite remote sensing measurements offer a unique perspective on mapping a large region simultaneously because of the synoptic and repeat coverage and that quantitative algorithms used for estimating constituents' concentration in the coastal environments. Thus, the main objectives of the present study are to analyze the retrieved Suspended Sediment (SS) pattern to predict changes after the commencement of the tide embankment construction work in 1991. This is accomplished with a series of the Landsat TM/ETM+ imagery acquired from 1985-2002 (a total of 18 imageries). Instead of a simple empirical algorithm, we implement an analytical SS algorithm, developed by Ahn et al. (2003), which is especially developed for estimating SS concentration (SSC) in Case-2 waters. The results show that there is a significant change in SS pattern, which is mainly influenced by the tide and tidal height after the construction of the embankment work. As the construction progressed, the distribution pattern of SS has greatly changed, and the rate of SS concentration in the gap area of the dyke of post-construction has significantly increased.

  • PDF

Extraction of Soil Wetness Information and Application to Distribution-Type Rainfall-Runoff Model Utilizing Satellite Image Data and GIS (위성영상자료와 GIS를 활용한 토양함수정보 추출 및 분포형 강우-유출 모형 적용)

  • Lee, Jin-Duk;Lee, Jung-Sik;Hur, Chan-Hoe;Kim, Suk-Dong
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.19 no.3
    • /
    • pp.23-32
    • /
    • 2011
  • This research uses a distributed model, Vflo which can devide subwater shed into square grids and interpret diverse topographic elements which are obtained through GIS processing. To use the distributed model, soil wetness information was extracted through Tasseled Cap transformation from LANDSAT 7 $ETM^+$ satellite data and then they were applied to each cell of the test area, unlike previous studies in which have applied average soil condition of river basin uniformly regardless of space-difference in subwater shed. As a resut of the research, it was ascertained the spatial change of soil wetness is suited to the distributed model in a subwater shed. In addition, we derived out a relation between soil wetness of image collection time and 10 days-preceded rainfall and improved the feasibility of weights obtained by the relation equation.

Effect of the Urban Land Cover Types on the Surface Temperature: Case Study of Ilsan New City (도시지역의 토지피복유형이 지표면온도에 미치는 영향: 경기도 일산 신도시를 중심으로)

  • Kim, Hyun-Ok;Yeom, Jong-Min
    • Korean Journal of Remote Sensing
    • /
    • v.28 no.2
    • /
    • pp.203-214
    • /
    • 2012
  • The physical environment of urban areas covered mostly by concrete and asphalt is the main cause of the urban heat island effect, primarily becoming apparent through increased land surface temperature. This study examined the effect of different urban land cover types on the land surface temperature using MODIS, Landsat ETM+ and RapidEye satellite data. As a result, the remote sensing based land surface temperature showed a marked difference according to the land use pattern in the case study of Ilsan new city. The high-rise apartment residential districts with less building-to-land ratio and higher green area ratio revealed lower land surface temperature than the low-story single-family housing districts characterized by relatively high building-to-land ratio and low green area ratio. From the view of climate zone and land cover types, there is a strong linear correlation between the impervious land cover ratio and the land surface temperature; the land surface temperature increases as the impervious built-up areas expand. In contrast, vegetation;water and shadow areas affect the decrease of land surface temperature. There is also a negative (-) correlation between NDVI and land surface temperature but the seasonal variation of NDVI can be hardly corrected.

Classification Strategies for High Resolution Images of Korean Forests: A Case Study of Namhansansung Provincial Park, Korea

  • Park, Chong-Hwa;Choi, Sang-Il
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.708-708
    • /
    • 2002
  • Recent developments in sensor technologies have provided remotely sensed data with very high spatial resolution. In order to fully utilize the potential of high resolution images, new image classification strategies are necessary. Unfortunately, the high resolution images increase the spectral within-field variability, and the classification accuracy of traditional methods based on pixel-based classification algorithms such as Maximum-Likelihood method may be decreased (Schiewe 2001). Recent development in Object Oriented Classification based on image segmentation algorithms can be used for the classification of forest patches on rugged terrain of Korea. The objectives of this paper are as follows. First, to compare the pros and cons of image classification methods based on pixel-based and object oriented classification algorithm for the forest patch classification. Landsat ETM+ data and IKONOS data will be used for the classification. Second, to investigate ways to increase classification accuracy of forest patches. Supplemental data such as DTM and Forest Type Map of 1:25,000 scale are used for topographic correction and image segmentation. Third, to propose the best classification strategy for forest patch classification in terms of accuracy and data requirement. The research site for this paper is Namhansansung Provincial Park located at the eastern suburb of Seoul Metropolitan City for its diverse forest patch types and data availability. Both Landsat ETM+ and IKONOS data are used for the classification. Preliminary results can be summarized as follows. First, topographic correction of reflectance is essential for the classification of forest patches on rugged terrain. Second, object oriented classification of IKONOS data enables higher classification accuracy compared to Landsat ETM+ and pixel-based classification. Third, multi-stage segmentation is very useful to investigate landscape ecological aspect of forest communities of Korea.

  • PDF

Analysis of Forest Cover Information Extracted by Spectral Mixture Analysis (분광혼합분석 기법에 의한 산림피복 정보의 특성 분석)

  • 이지민;이규성
    • Korean Journal of Remote Sensing
    • /
    • v.19 no.6
    • /
    • pp.411-419
    • /
    • 2003
  • An area corresponding to the spatial resolution of optical remote sensor imagery often includes more than one pure surface material. In such case, a pixel value represents a mixture of spectral reflectance of several materials within it. This study attempts to apply the spectral mixture analysis on forest and to evaluate the information content of endmember fractions resulted from the spectral unmixing. Landsat-7 ETM+ image obtained over the study area in the Kwangneung Experimental Forest was initially geo-referenced and radiometrically corrected to reduce the atmospheric and topographic attenuations. Linear mixture model was applied to separate each pixel by the fraction of six endmember: deciduous, coniferous, soil, built-up, shadow, and rice/grass. The fractional values of six endmember could be used to separate forest cover in more detailed spatial scale. In addition, the soil fraction can be further used to extract the information related to the canopy closure. We also found that the shadow effect is more distinctive at coniferous stands.

Time Series Analysis of Area of Deltaic Barrier Island in Nakdong River Using Landsat Satellite Image (Landsat 위성영상을 활용한 낙동강 삼각주 연안사주의 면적 시계열 분석)

  • Lee, Seulki;Yang, Mihee;Lee, Changwook
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.34 no.5
    • /
    • pp.457-469
    • /
    • 2016
  • Nakdong river barrage was affected by artificial interference such as construction of port, industrial complex and estuary barrage. This change in Nadong river lead to environmental changes and affected the ability of barrier islands. Therefore, it is decided that the observation of changes in the Nakdong river estuary is very important. In this paper, the topographic change of the Nakdong river barrage observe based on Landsat TM, ETM+ images from 1984 to 2015. In addition, this study tried to conduct a comparative analysis on the area for change of sandy sediment according to tide level. This results could estimate height and volume about sandy sediment accumulated on the lower sand dune. Also, these results are expected to be the basis for prediction of the changing topography of the sand dune. The area of the average change in region 1,2,3 was calculated as 3,015m2, 167,550m2, 14,596m2. This result is expected to be very useful for the continuous observation for sediment changes of Nakdong river.

Classification of Warm Temperate Vegetation Using Satellite Data and Management System (위성영상을 이용한 난대림 식생 분류와 관리 시스템)

  • 조성민;오구균
    • Korean Journal of Environment and Ecology
    • /
    • v.18 no.2
    • /
    • pp.231-235
    • /
    • 2004
  • Landsat satellite images were analyzed to study vegetation change patterns of warm-temperate forests from 1991 to 2002 in Wando. For this purpose, Landsat TM satellite image of 1991 and Landsat ETM image of 2002 were used for vegetation classification using ENVI image processing software. Four different forest types were set as a classification criteria; evergreen broadleaf, evergreen conifer, deciduous broadleaf, and others. Unsupervised classification method was applied to classily forest types. Although it was impossible to draw exact forest types in rocky areas because of differences in data detection time and rough resolution of image, 2002 data revealed that total 2,027ha of evergreen broadleaf forests were growing in Wando. Evergreen broadleaves and evergreen conifers increased in total areas compared to 11 years ago, but there was sharp decrease in deciduous broadleaves. GIS-based management system for warm-temperate forest was done using Arc/Info. Geographic and attribute database of Wando such as vegetation, soils, topography, land owners were built with Arc/Info and ArcView. Graphic user interface which manages and queries necessary data was developed using Avenue.