• 제목/요약/키워드: Landing Operation

검색결과 138건 처리시간 0.018초

수직이착륙 항공기의 함상이착륙 사례분석 (Trade-Off Study of Shipboard Landing of Vertical Take-off and Landing Aircraft)

  • 유창선;조암;박범진;강영신
    • 항공우주기술
    • /
    • 제12권1호
    • /
    • pp.10-21
    • /
    • 2013
  • 오늘날 헬리콥터 기술의 발전과 더불어 함상에서 헬리콥터를 운용하는 것은 당연한 것으로 여겨지고 있다. 육상과 달리 해상에서 항공기를 운용하기 위해서는 육상보다 심한 바람과 파도와 배의 이동에 의한 착륙장의 운동과 염분에 의한 장비의 부식이 고려되어야하며 안전한 운용을 위한 운용절차가 요구된다. 본 논문에서는 수직이착륙 항공기의 함상운용 사례분석을 통하여 함상운용에 요구되는 항공기와 선박의 고려사항과 운용절차를 알아보고 이를 기반으로 틸트로터 무인기의 함상운용 기술개발 방안을 제시한다.

A Study on the Longitudinal and Lateral Errors of Air Vehicle Heading for Auto-landing

  • Park, Ji Hee;Park, Hong Sick;Shin, Chul Su;Jo, Young-Wo;Shin, Dong-Ho
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제2권2호
    • /
    • pp.115-121
    • /
    • 2013
  • For the auto-landing operation of an air vehicle, the possibility of auto-landing operation should be first evaluated by testing the navigation performance through a flight test. In general, navigation performance is tested by analyzing north/east/down (NED) errors relative to reference equipment whose precision is about 8~10 times higher than that of a navigation system. However, to evaluate the auto-landing operation of an air vehicle, whether the air vehicle approaches a glide path aligned with the runway, within a specific error, needs to be examined rather than examining the north/east errors of the navigation system. Therefore, the longitudinal/lateral errors of air vehicle heading need to be analyzed. In this study, a method for analyzing the longitudinal/lateral errors of a navigation system was proposed as the navigation performance test method for evaluating the safety during the auto-landing of an air vehicle. Also, flight tests were performed six times, and the safety of auto-landing was examined by analyzing the performance using the proposed method.

Hard-landing Simulation by a Hierarchical Aircraft Landing Model and an Extended Inertia Relief Technique

  • Lee, Kyu Beom;Jeong, Seon Ho;Cho, Jin Yeon;Kim, Jeong Ho;Park, Chan Yik
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제16권3호
    • /
    • pp.394-406
    • /
    • 2015
  • In this work, an efficient aircraft landing simulation strategy is proposed to develop an efficient and reliable hard-landing monitoring procedure. Landing stage is the most dangerous moment during operation cycle of aircraft and it may cause structural damage when hard-landing occurs. Therefore, the occurrence of hard-landing should be reported accurately to guarantee the structural integrity of aircraft. In order to accurately determine whether hard-landing occurs or not from given landing conditions, full nonlinear structural dynamic simulation can be performed, but this approach is highly time-consuming. Thus, a more efficient approach for aircraft landing simulation which uses a hierarchical aircraft landing model and an extended inertia relief technique is proposed. The proposed aircraft landing model is composed of a multi-body dynamics model equipped with landing gear and tire models to extract the impact force and inertia force at touch-down and a linear dynamic structural model with an extended inertia relief method to analyze the structural response subject to the prescribed rigid body motion and the forces extracted from the multi-body dynamics model. The numerical examples show the efficiency and practical advantages of the proposed landing model as an essential component of aircraft hard-landing monitoring procedure.

비행기지 PAR을 이용한 DGPS 공항 접근 및 착륙 정확도 분석 (Analysis of DGPS Approach and Landing Accuracy using Air Base Precision Approach Radar)

  • 구정;표상호;강경성;김기형
    • 한국군사과학기술학회지
    • /
    • 제14권5호
    • /
    • pp.788-797
    • /
    • 2011
  • This paper analyzes the accuracy on the approach and landing of aircraft to an airport through comparison with airbase Precision Approach Radar and aircraft track data of DGPS equipped in aircraft. The proposed analysis result could be a basis for verifying the possibility that DGPS can be utilized in Airbase precision approach and landing. Position identification capability of widely used commercial DGPS is fairly accurate on latitude and longitude, while there is a slight error for being used in an airbase accurate approach and landing of Category I precision when it comes to altitude. Thus, we tested accuracy by analyzing actual flight track data of high performance aircraft to verify the accuracy of the airbase approach and landing using DGPS. Through the research, we developed instrumentation to compare PAR track data with DGPS track data, which can be used in reducing the number of PAR verification Flight utilizing it as a system measuring PAR accuracy at PAR installation phase.

틸트로터 무인기 함상이착륙 위한 파고운동 해석 및 시뮬레이션 (Sea Wave Modeling Analysis and Simulation for Shipboard Landing of Tilt Rotor Unmanned Aerial Vehicle)

  • 유창선;조암;박범진;강영신
    • 한국항공우주학회지
    • /
    • 제42권9호
    • /
    • pp.731-738
    • /
    • 2014
  • 오늘날 무인기는 기술 발전을 통해 육해상의 다양한 분야에서 이용되고 있다. 한국항공우주연구원(KARI)에서는 육상용 수직이착륙기로 개발된 틸트로터 무인기를 해상에서 운용할 수 있도록 임무영역 확장을 고려하고 있다. 틸트로터 무인기의 효과적인 해상운용을 위해서는 함상이착륙이 필요하지만 해상은 지상에 비해 염분, 연무, 바람등 기상영향을 많이 받는다. 또한 지상과는 달리 선박 운동으로 인한 착륙지점의 운동이 발생하며, 자동 함상착륙을 어렵게 만든다. 이러한 무인기 함상이착륙을 위하여 본 논문에서는 파고에 따른 선박 운동을 모델링 하고, 무인기 시뮬레이터를 통해 시험평가한 결과를 제시하고 있다.

무인헬기의 정밀 자동착륙 접근을 위한 영상정보 처리 (Vision Processing for Precision Autonomous Landing Approach of an Unmanned Helicopter)

  • 김덕열;김도명;석진영
    • 제어로봇시스템학회논문지
    • /
    • 제15권1호
    • /
    • pp.54-60
    • /
    • 2009
  • In this paper, a precision landing approach is implemented based on real-time image processing. A full-scale landmark for automatic landing is used. canny edge detection method is applied to identify the outside quadrilateral while circular hough transform is used for the recognition of inside circle. Position information on the ground landmark is uplinked to the unmanned helicopter via ground control computer in real time so that the unmanned helicopter control the air vehicle for accurate landing approach. Ground test and a couple of flight tests for autonomous landing approach show that the image processing and automatic landing operation system have good performance for the landing approach phase at the altitude of $20m{\sim}1m$ above ground level.

상륙정 입·출거시 안전성을 위한 Well Dock의 형상 및 상대운동 평가 (Well Dock Design and Assessment of Relative Motions During the Operation of the Landing Crafts Within Well Dock)

  • 윤상현;서관희
    • 대한조선학회논문집
    • /
    • 제49권2호
    • /
    • pp.164-173
    • /
    • 2012
  • Landing ship tank with well dock has the important mission transferring troops or landing equipments from sea to shore. Such transfers are usually carried out using landing crafts, which are loaded or unloaded in flooded well dock. In this situation, as relative motions are occur between well dock and landing craft, safety verifications are demanded. In this paper, seakeeping and safety performances are investigated through model test. First of all, well dock dimensions are reviewed and model tests are performed with sea state 3&4 in 180degree wave direction. Model tests are conducted for three relative positions and seakeeping performances are investigated each position.

드론 함상 착륙을 위한 도킹 방식의 자동 착륙 시스템 개발 및 시험 (Development and Test of a Docking Type Automatic Landing System for Shipboard Landing )

  • 박민수;김성욱;유혁
    • 항공우주시스템공학회지
    • /
    • 제18권2호
    • /
    • pp.47-55
    • /
    • 2024
  • 공중 무인 이동체(UAV)인 드론을 해상 무인 이동체(USV)와 자율 협력하여 임무를 수행하기 위해선 자동 착륙 시스템이 필요하다. 본 논문에서는 피라미드 형상의 착륙 장치와 패드를 기반으로 한 도킹 방식의 자동 착륙 시스템을 제안하였다. 파도, 바람 등 해상 환경에 의해 영향을 받더라도 드론이 착지할 수 있도록 유도하고, 결합(Docking) 장치를 통해 순간적으로 고정할 수 있다. 3-DoF 모션 플랫폼으로 함상의 거동을 모사하여 착륙 시험을 수행하였으며, 도킹 방식 자동 착륙 시스템의 운용·활용 가능성을 확인하였다.

항공기 착륙 수직 가속도 이벤트 통계적 분석 연구 (Research on Statistical Analysis of Vertical Acceleration Events during Aircraft Landing)

  • 전제형;김현덕
    • 한국항공운항학회지
    • /
    • 제32권2호
    • /
    • pp.135-141
    • /
    • 2024
  • Despite the innovative technological advances in the aviation industry, hard landing events that occur during aircraft landing account for 13% of all accidents. Hard landing when landing an aircraft affects normal operation by generating a large load on the landing gear and the fuselage. In order to identify these risk factors, the airline monitors the high vertical acceleration event, a precursor to hard landing, through QAR (Quick Access Recorder) flight data analysis, and prepares and implements mitigation measures. In this study, it is intended to contribute to safety management based on flight data analysis that identifies the characteristics of high vertical acceleration G event data that can cause such hard landing and detailed parameters of precursor signs, and to identify the causal relationship of the occurrence of the event by applying statistical analysis methods such as variance analysis, correlation analysis, and regression analysis models to identify the characteristics of the event occurrence and eliminate the cause in advance.

회전익 항공기 전륜착륙장치 단속거동 현상 개선연구 (An Improvement Study on Stick-Slip Behavior of Nose Landing Gear for Rotary Wing Aircraft)

  • 최재형;장민욱;이윤우;윤종진
    • 한국항공운항학회지
    • /
    • 제25권3호
    • /
    • pp.61-67
    • /
    • 2017
  • The Nose Landing Gear(NLG) of Rotary Wing Aircraft is an essential equipment in Landing System for pilot to perform a flight mission. It supports the fuselage at ground and absorbs the impact from the ground when landing, thereby, these functions sustain operational capability for pilot and crew. However, the A aircraft caused stick-slip behavior when it was stationed on the ground. Therefore, this paper summarizes pilot comment in operation which are classified by cause of occurrence and the troubleshooting process about each comment. It also describes design improvements which was derived from troubleshooting and suggests verification results of flight test.