• Title/Summary/Keyword: Landing Conditions

Search Result 138, Processing Time 0.021 seconds

Evaluation of Landing Stability of Lunar Lander Considering Various Landing Conditions (다양한 착륙환경변수를 고려한 달착륙선 착륙안정성 평가)

  • Jeong, Hyun-Jae;Lim, Jae Hyuk;Kim, Jin-Won
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.2
    • /
    • pp.124-132
    • /
    • 2018
  • In this paper, landing stability evaluation of lunar lander considering various landing conditions was performed. The status of landing stability of the lunar lander is classified into stable landing, conditionally stable landing due to sliding and unstable landing due to tip-over. In particular, the quasi-static tip-over equation was rearranged considering the phenomena of lowering the center of gravity and extension of foot-pad interval of the landing gear. These results were compared by finite element model analysis results using a commercial software ABAQUS and its validity and accuracy were verified. The verified finite element model was used for examining the tendency of various environmental variables such as landing conditions, friction coefficient, lateral speed and slope of ground.

Landing Dynamic and Key Parameter Estimations of a Landing Mechanism to Asteroid with Soft Surface

  • Zhao, Zhijun;Zhao, JingDong;Liu, Hong
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.14 no.3
    • /
    • pp.237-246
    • /
    • 2013
  • It is of great significance to utilize a landing mechanism to explore an asteroid. A landing mechanism named ALISE (Asteroid Landing and In Situ Exploring) for asteroid with soft surface is presented. The landing dynamic in the first turning stage, which represents the landing performance of the landing mechanism, is built by a Lagrange equation. Three key parameters can be found influencing the landing performance: the retro-rocket thrust T, damping element damping $c_1$, and cardan element damping $c_2$. In this paper, the retro-rocket thrust T is solved with considering that the landing mechanism has no overturning in extreme landing conditions. The damping element damping c1 is solved by a simplified dynamic model. After solving the parameters T and $c_1$, the cardan element damping $c_2$ is calculated using the landing dynamic model, which is built by Lagrange equation. The validities of these three key parameters are tested by simulation. The results show a stable landing, when landing with the three estimated parameters T, $c_1$, and $c_2$. Therefore, the landing dynamic model and methods to estimate key parameters are reasonable, and are useful for guiding the design of the landing mechanism.

Hard-landing Simulation by a Hierarchical Aircraft Landing Model and an Extended Inertia Relief Technique

  • Lee, Kyu Beom;Jeong, Seon Ho;Cho, Jin Yeon;Kim, Jeong Ho;Park, Chan Yik
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.16 no.3
    • /
    • pp.394-406
    • /
    • 2015
  • In this work, an efficient aircraft landing simulation strategy is proposed to develop an efficient and reliable hard-landing monitoring procedure. Landing stage is the most dangerous moment during operation cycle of aircraft and it may cause structural damage when hard-landing occurs. Therefore, the occurrence of hard-landing should be reported accurately to guarantee the structural integrity of aircraft. In order to accurately determine whether hard-landing occurs or not from given landing conditions, full nonlinear structural dynamic simulation can be performed, but this approach is highly time-consuming. Thus, a more efficient approach for aircraft landing simulation which uses a hierarchical aircraft landing model and an extended inertia relief technique is proposed. The proposed aircraft landing model is composed of a multi-body dynamics model equipped with landing gear and tire models to extract the impact force and inertia force at touch-down and a linear dynamic structural model with an extended inertia relief method to analyze the structural response subject to the prescribed rigid body motion and the forces extracted from the multi-body dynamics model. The numerical examples show the efficiency and practical advantages of the proposed landing model as an essential component of aircraft hard-landing monitoring procedure.

Dynamic Behaviors and Optimal Design of an Aircraft Nose Landing Gear using ADAMS (ADAMS를 이용한 항공기 전륜착륙장치의 동적거동해석 및 최적설계)

  • Kim, Sun-Goo;Kim, Cheol;Kim, Young-Man
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.7
    • /
    • pp.612-618
    • /
    • 2007
  • The dynamic behaviors of a KT-1 family aircraft nose landing gear have been analyzed and the optimal design of an aircraft shock absorber has been conducted to improve efficiency of shock energy absorption. The nose landing gear is modeled as a 2 DOF system using ADAMS and various operational and environmental landing conditions were considered. The results of dynamic simulation for various landing conditions agree well with experiments. Also the effect of parameters of a shock strut on the dynamic behaviors and on shock energy absorption of the nose landing gear has been evaluated for optimal design to define design variables. It has been found that the parameters of a shock strut such as oil-density and orifice area have more effects on dynamic behaviors than those of operation conditions. Optimal design is performed to maximize the efficiency of shock energy absorption using Feasible Direction Method. As a result the design values of the shock strut for maximum efficiency of shock energy absorption are derived and it turns out that efficiency and dynamic behaviors of the nose landing gear were improved by the optimal design.

Impact Dynamic Analysis for the Wheel-Type Landing Gear System of Helicopter (헬리콥터 휠타입 착륙장치 충돌특성 연구)

  • Park, Hyo-Geun;Kim, Dong-Man;Kim, Dong-Hyun;Cho, Yun-Mo;Chung, Jae-Hoon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.11 no.5
    • /
    • pp.12-22
    • /
    • 2008
  • In this study, the dynamic characteristics for the wheel-type landing gear system of helicopter have been analyzed. Nonlinear multi-body dynamic models of the landing gear system are constructed and the equations of motion, kinematics and internal forces of shock strut are considered. In addition, flexibility effect of the wheel axle with equivalent beam element is taken into account. General purpose commercial finite code, SAMCEF which includes MECANO module is applied. The results of dynamic simulation for various landing and weight conditions are presented and compared with each other. Based on the results, characteristics of impact dynamic behaviors of the landing gear system are practically investigated.

Analysis of landing site for lander and rover on Moon and Mars

  • Seo, Haingja;Kim, Eojin;Kim, Joo Hyeon;Lee, Joo Hee;Choi, Gihyuk;Sim, Eun-Sup
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.105.1-105.1
    • /
    • 2012
  • Moon and Mars have been explored by landers and rovers. Apollo missions landed five times on Lunar surface, and various rovers, including Curiosity landed and explored Mars. The selection of landing site have to be considered engineering and scientific side: the landing site to be available to land stably? the obstacle is not around the rover such as rocks and pothole? the landing site is valuable with scientific? And then landing site have to be the place which is satisfied two objects. We search the information about landing sites of Moon and Mars, and compile the conditions of landing sites. We expect that these data are useful when the landing site of Moon or Mars for Korean mission is selected.

  • PDF

Preliminary Mission Design of Transfer Orbit of a Lunar Lander Launched by a Korean Space Launch Vehicle (국내 발사체를 이용한 달착륙선 발사시 전이 궤도 예비 임무 설계)

  • Song, Eun-Jung;Lee, Sang-il;Choi, iyoung;Sun, Byung-Chan;Roh, Woong-Rae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.12
    • /
    • pp.867-875
    • /
    • 2022
  • The preliminary mission analysis of a lunar lander, which is mounted on the upper stage of a Korean space launch vehicle, is performed when landing on the moon through a trans-lunar injection maneuver after being injected into the earth's low orbit by th launcher in this paper. Both direct landing and orbital landing methods, which have each advantage and disadvantages, are applied and their transfer orbit characteristics are analyzed according to the launch date when launching in lunar October 2030. We also analyzed the launch dates which satisfying eclipse conditions, solar elevation conditions, and tracking time intervals such as the US lunar lander Surveyor-1. The obtained results show that the most appropriate launch date is the 4th day of lunar October in case of direct landing method, and the 3rd day in case of indirect landing method, since the argument of perigee of the trans-lunar injection orbit and eclipse conditions are favorable in the dates.

A Study of the Effects of Hard Landing on Aircraft Structure (Hard Landing이 항공기 구조물에 미치는 영향성 연구)

  • Oh, Yong-Kyu;Sim, Sang-Ki;Shin, Ki-Su
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.14 no.5
    • /
    • pp.805-811
    • /
    • 2011
  • Aircraft MLG and wing structures have been recognized as fatigue critical structures and exposed to the risk of fatigue crack initiation and propagation. Furthermore, these structures are frequently subjected to serious dynamic loading condition during a Hard Landing which may lead to their failure. Especially, structural integrity of MLG and wing components is decreased as the flight time increased because of the fatigue damage accumulated on the aircraft. In this study, the effects of Hard Landing on the MLG and wing components of aging aircraft were evaluated by using numerical approach. To achieve the aim, a finite element model has been developed and simulations were conducted by varying the landing conditions. As a result, it was revealed that the high stress concentration phenomenon was occurred at the lower Side Brace of MLG. Thereby, the intensified inspection for the lower Side Brace should be considered to prevent unexpected aircraft mishap.

Design of a Digital Adaptive Flight Control Law for the ALFLEX

  • Ito, Hideya;Shimada, Yuzo;Uchiyama, Kenji
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.519-524
    • /
    • 2003
  • In this report, a longitudinal adaptive flight control law is presented for the automatic landing system of a Japanese automatic landing flight experiment vehicle (ALFLEX). The longitudinal adaptive flight control law is designed to track an output of the vehicle to a guidance signal from the guidance portion of the automatic landing system. The proposed adaptive control law in the attitude control portion adjusts the controller gains continuously online as flight conditions change, in spite of the existence of unmodeled dynamics. The number of the controller gains to be adjusted is decreased to 1/2 from the previous studies. Computer simulation involving six-degree-of-freedom (DOF) nonlinear flight dynamics is performed to examine the effectiveness of the proposed adaptive control law. In order to verify the influence of the dispersion of the initial conditions, the Monte Carlo simulation is also applied. The initial conditions are more widely dispersed than the previous studies. As a result, except under the unsuitable initial conditions, the ALFLEX successfully landed on the runway.

  • PDF

An Weather Analysis for Selection of the Aircraft Category F's Alternative Airport (F급 항공기 교체공항 선정을 위한 기상분석)

  • Kim, Y.C.;Kim, Dohyun
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.20 no.4
    • /
    • pp.70-75
    • /
    • 2012
  • This paper is part of the research about the selection and justification of Jeju international airport as an aircraft category 'F' alternative airport, which is the results of an weather analysis based on meteorological statistics. As the results of the study, it has been only 1 day per year (58minutes) that weather conditions of Incheon and Jeju international airports, from January 2006 to June 2011, are below landing weather minimums of each airport at the same times. This means that these airports are not within the same meteorological region, which is against the current orthodoxy. In addition, it is very rare that weather conditions of Jeju international airports are below landing weather minimums when Incheon international airport is below landing weather minima. It shows that the meteorological characteristics of these regions differ widely and the designation of Jeju international airport as an alternative airport is scientifically reasonable.