• Title/Summary/Keyword: Landfill gas energy facility

Search Result 12, Processing Time 0.03 seconds

Operating Performance Evaluation of Landfill Facility and Landfill Gas (LFG) Energy Facility (매립시설 및 매립가스 에너지화시설 운영현황 분석)

  • Kim, Jong-Hwan;Phae, Chae-Gun;Park, Joon-Seok
    • Clean Technology
    • /
    • v.24 no.3
    • /
    • pp.221-232
    • /
    • 2018
  • This research was conducted to evaluate the operational performance of landfill facility and landfill gas energy facility from the questionnaire survey. In order to evaluate overall operational performance, three types of weighting methods were applied to each technical, economical, and environmental item. There was no significant difference between an equal weighted method, a weighted method of 40% for technology, 30% for economy, and 30% for environment, and a weighted method of 30% for technology, 40% for economy, and 30% for environment. In technical performance, large and middle scales of landfill facilities showed higher scores of 14.8 ~ 19.7 and 14.3 ~ 19.0 than 9.8 ~ 13.0 of small scale one. In environmental performance, large, middle, and small scales of landfill facilities showed 21.3 ~ 23.7, 17.6 ~ 19.6, and 20.8 ~ 23.1 scores, respectively. However, in economical performance, there was significant difference between them with scale. Large and middle scales of landfill facilities showed higher scores of 22.0 ~ 29.3 and 20.5 ~ 27.3 than 6.0 ~ 8.0 of small scale one. As a result of evaluation for landfill gas energy facility, large scale facility showed 19.2 ~ 25.6 and 17.8 ~ 23.7 scores in technical performance and 23.1 ~ 25.7 and 21.3 ~ 23.7 scores in environmental performance, respectively. However, in economical performance evaluation, large scale of landfill gas energy facility showed relatively higher of 27.8 ~ 33.3 score than 18.8 ~ 25.1 of small scale one. From these results, it was shown that economy evaluation heavily effect on the operational performance of landfill facility and landfill gas energy facility compared to technology and environment evaluation.

Application of the Microbial Process for Hydrogen Sulfide Removal and Bio-Sulfur Production from Landfill Gas (미생물 공법에 의한 매립가스 황화수소 제거 및 바이오황 생산)

  • Khim, Young-Min;Song, Hyo-Soon;Ahn, Hyoseong;Chun, Seung-Kyu
    • New & Renewable Energy
    • /
    • v.16 no.1
    • /
    • pp.68-76
    • /
    • 2020
  • Operational testing of the THIOPAQ® facility that removes H2S from landfill gas was performed for 746 days. The average H2S removal efficiency was 99.4%, and the input quantities of air, NaOH, and nutrients per sulfur load were 13.1 ㎥/ton, 1.5 ㎥/ton, and 28.7 L/ton, respectively. The purity of the bio-sulfur produced from the facility was 94.8%, with 3.3% impurities, except for moisture. X-ray photoelectron spectroscopy showed that the compositional contents of amino acids and free amino acids of the bio-sulfur surface were 5,308 and 728 mg/kg, respectively. The mean particle size was 3.41 ㎛, which was much smaller than that of chemical sulfur. Based on these results, a high H2S removal rate of more than 97% is feasible, and high value-added bio-sulfur, which is used as a fungicide because of its hydrophilic characteristics and small size, can be obtained at this facility.

A Study on the Demand Modelling for District Cooling Energy Source (지역냉방 열원의 수요모형에 관한 연구)

  • Kim, Jin Hyung;Choi, Byung Ryeal
    • Environmental and Resource Economics Review
    • /
    • v.11 no.4
    • /
    • pp.633-657
    • /
    • 2002
  • This study presents a demand modelling for landfill gas, which is used as alternative energy source for district cooling business. By analyzing the cost minimizing behavior of producer facing with three alternative energy sources such as electricity, cooling heat water, and gas, a demand function for landfill gas is derived from the optimal operating time of gas fired production facility, and estimated using unpublished data, which are associated with Seoul city's development plan for Sang-am area. The estimation results repeals that Seoul City could supply the land-fill gas of 13.76 million cubic meters each year at the price of about 16 won per cubic meters. However, if the investment costs associated with installation of gas collecting facilities are treated as sunk costs, annual amount of gas supplied is expected to increase to 14.22 million cubic meters at a lower unit price of 14.76 won.

  • PDF

Reuse and Remediation of Closed Landfill in Korea

  • Shin, Chan-ki
    • Proceedings of the Korean Environmental Health Society Conference
    • /
    • 2002.04a
    • /
    • pp.91-99
    • /
    • 2002
  • A recent survey investigated that there were over one thousand un-controlled closed landfills(1,072 sites) in Republic of Korea. Most of these landfills were constructed before 1986. Waste management act were not promulgated at that time, so they usually do not have dranage system and leachate treatment facility. Also, considerable attention has been received to landfill leachate pollution, leachate has an adverse impact on the surrounding environment such as soil, groundwater, and water supply source. According to the result of survey for closed landfill management, it was reported that 875 sites out of 1,072sites(81.6%) have no leachate treatment facility and 630 sites out of 1,072sites(58.7%) have been used for farm lands and residence. Consequently it is hard to do postclosure care continuously in most of cases and these uncontrolled landfills have contaminated farm lands and residence. The average age of these landfills are ranged mostly between 2 to 15 years. Much time and advanced technology are needed to remediate these uncontrolled landfills, therefore the survey for present status of closed landfill sites is required and suitable treatment processes should be prepared. With this point of view, We has been investigated to find out the present status of closed landfill, problems of post management and discussed plans for remediation and reuse. Remedial actions of un-controlled landfill have been carried out the many cities since 1997 upto now. Most frequently applied technology were reuse after excavation and there were several cases to capping in the surface of landfill and to construct subsurface barriers. It is considered that landfills in use have a possibility not to be controlled because of inadequate construction and improper management. Therefore remediation of uncontrolled landfills and recovery technology should be develop continuously Especially, it has been expected that resource technology of landfill gas as a energy has some advantages in controlling odors in the site area and accelerating stabilization of landfills with the energy.

  • PDF

Study of Selected IPCC Methodologies for the Estimation of Greenhouse Gas Emissions from a Landfill (매립지 온실 가스 배출량 산정을 위한 IPCC 선정방법별 특성 연구)

  • Jung, Sung Hoon;Hwang, Hyeon Uk;Kim, Myung Gyun;Yan, Cao Zheng;Nzioka, Antony Mutua;Tinega, Joseph Nyamoko;Kim, Young Ju
    • Resources Recycling
    • /
    • v.25 no.5
    • /
    • pp.28-35
    • /
    • 2016
  • The purpose of this study was to estimate greenhouse gas emissions using IPCC 1996 Guideline Tier 1, Good Practice Guidance 2000 Tier 2 and IPCC 2006 Guideline First Order Decay methods from landfill disposal facility. In addition, a comparative analysis evaluating the pros and cons of each method based on assumptions and default factors was considered for each method. The greenhouse gas emission computed using IPCC 1996 Guideline Tier 1 method (2,760 ton/yr) was higher than the estimation of GPG 2000 Tier 2 and IPCC 2006 Guideline First Order Decay Model which showed 1500 and 880 ton/yr respectively between 2000 and 2013.

Evaluation on Resource Recovery Potential by Landfill Gas Production (매립가스 발생량에 따른 자원화 가능성 평가)

  • Lee, Hae-Seung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.10
    • /
    • pp.4679-4688
    • /
    • 2011
  • This study was performed to the municipal waste generation amounts and characteristics for B city in Gangwon province, predicted the methane gas generation rate emitted from landfill, and analyzed the possibility of energy recovery to RDF(Refuse Derived Fuel) using combustible waste. The study results showed that the average bulk density of municipal waste for B city was 144.0 kg/$m^3$, and the average ratios of combustible waste were 36.0 % of paper, 21.6 % of vinyl, and 19.7 % of food waste. respectively. In the experiment for heating value, high and low heating value(moisture) was measured to 3,471 $kca{\ell}$/kg and 2,941 $kca{\ell}$/kg, respectively. After the prohibition of burying of food waste in landfill, the heating value of municipal waste was dramatically increased due to increase of the ratio of paper, vinyl, and plastic waste. The prediction results of methane gas generation rate emitted from landfill showed that the gas generation rate is increasing to 2,505.7 CH4 ton/year in 2021. After then, the rate is decreasing gradually. When the RDF facility is installed, the rate is decreasing after peaking at 1,956.9 CH4 ton/year in 2013. The generation rate of LFG emitted from waste landfill of B city was analyzed to 9.92 $m^3$/min, similar to 10.11 $m^3$/min for other city.

A study on inspection methods for waste treatment facilities(I): Derivation of impact factor and mass·energy balance in waste treatment facilities (폐기물처리시설의 세부검사방법 마련연구(I): 공정별 주요인자 도출 및 물질·에너지수지 산정)

  • Pul-Eip Lee;Eunhye Kwon;Jun-Ik Son;Jun-Gu Kang;Taewan Jeon;Dong-Jin Lee
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.31 no.1
    • /
    • pp.69-84
    • /
    • 2023
  • Despite the continuous installation and regular inspection of waste treatment facilities, complaints about excessive incineration and illegal dumping stench continue to occur at on-site treatment facilities. In addition, field surveys were conducted on the waste treatment facilities currently in operation (6 type) to understand the waste treatment process for each field, to grasp the main operating factors applied to the inspection. In addition, we calculated the material·energy balance for each main process and confirmed the proper operation of the waste disposal facility. As a result of the site survey, in the case of heat treatment facilities such as incineration, cement kilns, and incineration heat recovery facilities, the main factors are maintenance of the temperature of the incinerator required for incineration and treatment of the generated air pollutants, and in the case of landfill facilities Retaining wall stability, closed landfill leachate and emission control emerged as major factors. In the case of sterilization and crushing facilities, the most important factor is whether or not sterilization is possible (apobacterium inspection).In the case of food distribution waste treatment facilities, retention time and odor control during fermentation (digestion, decomposed) are major factors. Calculation results of material balance and energy resin for each waste treatment facility In the case of incineration facilities, it was confirmed that the amount of flooring materials generated is about 14 % and the amount of scattering materials is about 3 % of the amount of waste input, and that the facility is being operated properly. In addition, among foodwaste facilities, in the case of an anaerobic digestion facility, the amount of biogas generated relative to the amount of inflow is about 17 %, and the biogas conversion efficiency is about 81 %, in the case of composting facility, about 11 % composting of the inflow waste was produced, and it was comfirmend that all were properly operated. As a result, in order to improve the inspection method for waste treatment facilities, it is necessary not only to accumulate quantitative standards for detailed inspection methods, but also to collect operational data for one year at the time of regular inspections of each facility, Grasping the flow and judging whether or not the treatment facility is properly operated. It is then determined that the operation and management efficiency of the treatment facility will increase.

A study on inspection methods for waste treatment facilities(II): Derivation of problems and improvement direction in inspection methods (폐기물처리시설의 세부검사방법 마련연구(II): 세부검사방법 문제점도출 및 개선방향 설정)

  • Pul-Eip Lee;Eunhye Kwon;Jun-Ik Son;Jun-Gu Kang;Taewan Jeon;Dong-Jin Lee
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.31 no.1
    • /
    • pp.85-100
    • /
    • 2023
  • In this study, in order to improve the installation periodical inspection method of waste treatment facilities, we conducted on-site surveys of waste treatment facilities classified into six fields, grasped the problems of inspection methods, and made improvements accordingly. And revised the inspection method for waste treatment facilities. As a result, in the field of incineration and incineration heat recovery, inspection methods such as total temperature measurement and one-year TMS data comparison using a thermal imaging camera were established. And for the safety of the inspected person, it was applied so that the waste can be replaced with a document without opening it. In the case of landfill facilities, the details regarding the use of video information processing equipment and the management of facilities covering the upper part of the landfill facility are presented in the law, but the items that do not have a inspection methods were applied to the inspection method. In the case of Food Waste Treatment Facility, inspection methods were put in place to ensure compliance with standards for foul-smelling fish in odor control, a major cause of complaints. As a result, 10 out of 18 improvement proposals were reflected in the incineration and sterilization grinding, cement kiln, and incineration heat recovery facilities, and 11 out of 12 improvement proposals were reflected in the landfill facility. In the case of food distribution waste treatment facilities, 10 out of 12 improvement proposals were reflected, and a total of 31 inspection methods were improved.

Effect of Waste Energy Recovery on SUDOKWON Landfill Gas Generation (폐기물 에너지화가 수도권매립지 매립가스 발생량에 미치는 영향)

  • Chun, Seung-Kyu
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.10
    • /
    • pp.942-948
    • /
    • 2010
  • To predict the potential reduction of $CH_4$ by recovering several types of wastes as of reusable energy sources like RDF, the $CH_4$ emission for each type of waste from Landfill Site 3 of SUDOKWON Landfill was estimated for the period of 2017 to 2024. Without any recovering effort on types of wastes being disposed of at the Landfill, there are producing a total of $526{\times}10^6\;Nm^3$ of $CH_4$; municipal waste of $337{\times}10^6\;Nm^3$, construction waste of $178{\times}10^6\;Nm^3$, and facility waste of $11{\times}10^6\;Nm^3$. It composed of 41.5% to that observed from 2002 to 2009. With properly retrieved by MT(Mechanical Treatment), it released a total of $158{\times}10^6\;Nm^3$ $CH_4$; $127{\times}10^6\;Nm^3$, $28{\times}10^6\;Nm^3$, and $4{\times}10^6\;Nm^3$, respectively. Additionally, when biologically degradable residues can be fully treated by MBT (Mechanical & Biological Treatment) system, the total amount of $CH_4$ emitted from the site will be lowered down as low as $115{\times}10^6\;Nm^3$, which is comparably lower showing only 21.8% to that for without any energy recovery practice. Futhermore, it is far less showing 9.1% to that obtained from 2002 to 2009. It can be decided that predictable amount of $CH_4$ emission reduced could be successfully accomplished and enhanced through ways of energy recovery efforts such as further scale adjustment of LFG treatment capacity in association with currently implemented practices in the landfill site.

A Study on the Safety Grounding for Prevention of Electric Shock Hazard in Construction of Industrial Plant in Maritime Landfill Area (해상 매립 지역 산업 플랜트 건설 시 감전 재해 예방을 위한 안전 접지에 관한 연구)

  • Kim, Hong-Yong;Jang, Ung-Burm
    • Journal of the Society of Disaster Information
    • /
    • v.13 no.3
    • /
    • pp.305-312
    • /
    • 2017
  • In our society, the advanced, advanced, and information industries have continued to grow and now live in the era of the fourth industrial revolution. As the industry develops, the load of the users has also increased so much that it is deepened by the energy shortage phenomenon and the construction of additional energy facilities is required. Therefore, energy plant construction work is being actively carried out in the coastal area. In particular, it is common to build a plant in the ground by filling the coast with soil in other regions, reflecting the fact that Korea is lacking in the country when constructing power plants, gas and petrochemical plants. Current domestic grounding designs are designed or constructed to suit only the use of grounding resistors based on the electrical equipment design technical standards. However, in the case of a plant facility constructed in the untested buried soil, when the lightning current and the abnormal current are inputted, the facility operator or the user due to the elevation of the ground potential is seriously exposed to the risk of electric shock disaster. In this paper, we analyze the ground resistivity of the landfilled soil and use a computer program (CDEGS) based on KS C IEC 61936-1, We analyze the contact voltage and stratification voltage and propose a grounding design optimized for plant installation.