• Title/Summary/Keyword: Land-mine

Search Result 98, Processing Time 0.024 seconds

Environment-friendly Processing Technologies of Mine Tailings: Research on the Characteristics of Mine Tailings when Developing of Deep Sea Mineral Resources (선광잔류물의 친환경적 처리 기술: 심해저광물자원개발시 발생하는 선광잔류물 특성 연구)

  • Moon, Inkyeong;Yoo, Chanmin;Kim, Jonguk
    • Economic and Environmental Geology
    • /
    • v.53 no.6
    • /
    • pp.781-792
    • /
    • 2020
  • Mine tailings, which are inevitably formed by the development of manganese nodules, manganese crusts, and hydrothermal seafloor deposits, have attracted attention because of their quantity and potential toxicity. However, there is a lack of data on the quantity of mine tailings being generated, their physicochemical properties, and their effects as environmental hazards and on marine ecosystems in general. The importance of treating mine tailings in an environmentally friendly manner has been recognized recently and related reduction/treatment methods are being considered. In the case of deep-sea mineral resource development, if mine tailings cannot be treated aboard a ship, the issue becomes one of the cost of transporting them to land and solving the problem of environmental pollution there. Therefore, the Korea Institute of Ocean Science and Technology conducted research on the harmfulness of mine tailings, their effect on marine ecosystem, the diffusion model of contaminated particles, and candidate purification treatment technologies based on five representative controlling factors: 1) effects of pollution /on the environment, 2) effects of environmental/ biological hazards, 3) diffusion of particles, 4) mineral dressings, and 5) reducing/processing mine tailings. The results of this study can provide a basis for minimizing environmental problems by providing scientific evidences of the environmental effects of mine tailings. In addition, it is also expected that these results could be applied to the treatment of pollutants of different origins and at land-based mining waste sites.

금정광산 주변 토양의 중금속 오염현황 및 그 처리 방안

  • 이기철;이승길;한인호;최광호;정덕영
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 1998.11a
    • /
    • pp.189-194
    • /
    • 1998
  • Geochemical study was carried out to find out the distribution of metals and cyanide in soil in the vicinity of the abandoned Keum-Jung mine. Chemical analysis showed that content of As in soil around tailings exceeded 15mg/kg, Korean standard of soil contamination in the farm land. That means the contamination of soil by As is due to input of tailings. According to total decomposition of tailings, As was highly concentrated in tailings. However the water in tailings impoundment was changed to acidic and contaminated by metal and sulfate because the tailings in the top of the tailings impoundment had been oxidized. Acid mine drainage contaminated the water course in the vicinity of the paddy soils. The proper measures are required to prevent contamination of the soil and water in the vicinity of the Keum-Jung mine.

  • PDF

Durability of the Solidified Mine Tailing-Hydrated Lime Mixture Against Repeated Freezing and Thawing (폐광미-소석회 고화체의 동결융해 내구성에 관한 연구)

  • Min, Kyoung-Won;Lee, Hyun-Cheol;Kim, Tae-Poong
    • Journal of Industrial Technology
    • /
    • v.28 no.B
    • /
    • pp.65-69
    • /
    • 2008
  • The tailings piled in abandoned mines are well-known potential sources of soil contamination. Hydrated limes were applied as cementing materials to solidify heavy metal contaminated tailings for the purpose of reducing their toxicity and migration rates. The optimum mixing ratio of tailings, hydrated lime, and water was determined through a preliminary test. The mixtures of mine tailings and hydrated lime solidified through pozzolanic reaction were tested for their durability against repeated freezing and thawing processes. After repeated freezing and thawing, the uniaxial compressive strengths of all the solidified mixture specimens decreased in comparison with those before test but still higher than $3.5kgf/cm^2$, the standard recommended for land reclamation solids by EPA(Environmental Protection Agency), which suggested that hydrated lime be a potential material to treat the abandoned mine tailings for the environmental purpose.

  • PDF

Study on the Contamination Characteristics of Pollutants at Various type of Abandoned Metal Mines (폐금속 광산의 유형별 오염특성에 관한 연구)

  • Lee, Jong-Deuk;Kim, Tae Dong;Kim, Sun Gu;Kim, Hee-Joung
    • Journal of Soil and Groundwater Environment
    • /
    • v.18 no.3
    • /
    • pp.93-108
    • /
    • 2013
  • This study is aimed to prepare the effective detail survey methods(Phase II) of abandoned metal mines through the contamination assessment for mine types and facilities in the abandoned metal mine areas. The study sites of 12 abandoned mines are located in Gyeonggi-do and Gangwon-do and those were chosen among 310 sites that the Phase II survey was conducted from 2007 to 2009 after considering the results of Phase I for abandoned mines scattered all over the country. 12 study sites were classified into four types; Type I sites only have pit mouth. Type II sites have pit mouth and mine-waste field. Type III sites have pit mouth and tailing sorting field. Type IV sites have pit mouth, tailing sorting field and concentrator(s). In forest land, paddy soil and farm land of Type I, As and Cd were showed average concentration, and Cu and Pb were high on the pit mouth area in one mines where the pit mouth was developed within 500 m. In the mines of Type II, Cu and Pb were showed average concentration too, but As and Cd were slightly high in pit mouth and mine-waste field. The mines of Type III which had grinding particle process through physical separation milling or hitting showed similar tendency with Type II. However, mines of Type IV pit mouth, mine-waste field and showed various results depending on defining the contamination sources. For example, if contamination source was pit mouth, the mixed results of Type I, II, II were showed. In tailing sorting field which was regarded as the most important source and having high mobility, however, if there were no facilities or it was difficult to access directly, field sampling was missed occasionally during phase I and phase II survey. For that reason, the assessment for tailing sorting field is missed and it leads to completely different results. In the areas of Type I mines, the concentration of heavy metals exceeded precautionary standards of soil contamination or not within 1,000 meters of pit mouth. Nickel(Ni) was the largest factor of the heavy metal contamination in this type. The heavy metals except Arsenic(As) were shown high levels of concentration in Type II areas, where pit mouth and mine-waste field were operated for making powder in upriver region; therefore, to the areas in the vicinity of midstream and downstream, the high content of heavy metals were shown. The tendency of high level of heavy metals and toxic materials contained in flotation agent used during sorting process were found in soil around sorting and tailing field. In the abandoned-pit-mouth area, drygrinding area and tailing sorting field area, the content of Cupper(Cu) and Zinc(Zn) were higher than other areas. Also, the contaminated area were larger than mine reclamation area(2,000 m) and the location of tailing sorting field was one of the important factors to estimate contaminated area.

Fraction and Soil Pollution Assesment Index of heavy metals in cultivated land soils near the abandoned mine (폐광산지역 경작지 토양의 중금속 존재형태와 토양오염평가)

  • 김휘중;양재의;이재영;최상일;전상호
    • Journal of Soil and Groundwater Environment
    • /
    • v.8 no.4
    • /
    • pp.53-63
    • /
    • 2003
  • Objectives of this research were to fractionate heavy metals in soil samples in the upper Okdong River basin and to assess the potential pollution index of each metal fraction. Soil samples were collected from the cultivated land soils and analyzed for physical and chemical properties. pH of cultivated soils ranged from 5.2 to 7.6. Contents of total kelhaldal nitrogen and loss on ignition were in the ranges of 0.6∼2.5%, and 1.9∼12.9%, respectively. Heavy metals in the cultivated land soils were higher in the abandoned closed coal mine near field soils than those in the paddy soils. Total concentrations of metals in the cultivated land soils were in the orders of Zn > Pb > Ni > Cu > Cd, exceed the corrective action level of the Soil Environment Conservation Law and higher than the naturals were abundance levels reported from uncontaminated cultivated land soils. Mobile fractions of metals were relatively small compared to the total concentrations. Soil Pollution Assesment Index (SPAI) values of each fraction of metals were leveled from Non polluted to Moderately polluted based on total concentrations. SPAI values of mobil fractions were lower than those of immobile fractions. Results on metal fractions and SPAI values of the cultivated land soils indicate that field soils samples were contaminated with heavy metals and had potential to cause a detrimental effects on plants. A prompt countermeasure to prevent field soils in the abandoned closed coal mine near fields are urgently needed.

Evaluation of Heavy Metal Contamination in Geochemical Environment around the Abandoned Coal Mine - With special reference to geochemical environment around the Imgok Creek in the Gangreung Coal Field - (폐석탄광 주변 지구화학적 환경의 중금속 오염 평가 - 강릉탄전 임곡천 일대를 중심으로 -)

  • Chon, Hyo-Taek;Kim, Ju-Yong;Choi, Si-Young
    • Economic and Environmental Geology
    • /
    • v.31 no.6
    • /
    • pp.499-508
    • /
    • 1998
  • The Imgok Creek is located in the Gangreung coal field, which has been known that sulfides are more abundant than other coal fields in Korea, and it has been severly contaminated by acid mine drainage (AMD) discharging from the abandoned coal mines, such as the Youngdong, the Dongduk and the Waryong coal mines. The purposes of this study are to synthetically assess the contamination of natural water, stream sediment and cultivated soils, and to provide the basic data for AMD treatment. Geochemical samples were collected in December, 1996 (dry season) and April, 1997 (after three day's rainfall). TDS of the Youngdong mine water was remarkably higher than those of other mine waters. In the Imgok Creek, concentrations of most elements, except Fe decreased with distance by dilution caused by the inflow of uncontaminated tributaries. From the results of NAMDI and $I_{geo}$ calculation, the Youngdong coal mine was the main contamination source of the study area. Groundwater pollution was not yet confirmed in this study and the paddy and farm land soils were also not yet contaminated by mining activity based on the pollution index ranging from 0.27 to 0.47.

  • PDF

Analysis on Changing Perceptions of Local Residents after Casino Establishment in GangwonLand (강원랜드 카지노설립 이후 지역주민들의 인식변화에 대한 분석)

  • Lee, Ok-Dong;Choi, Jeong-Il;Bang, Gueg-Taek
    • The Journal of the Korea Contents Association
    • /
    • v.14 no.8
    • /
    • pp.382-393
    • /
    • 2014
  • The purpose of this study is to evaluate level of achieving original policy goals to some degree in a variety of ways, and to provide basic data of establishment for promotion policy of abandoned mine area and furthermore, to contribute to that area and Casino policy research. To attain these sorts of research goals, a case method of study is employed to evaluate achievement of policy goals based on goal achievement model, and to survey satisfaction levels of the people of abandoned mine district based on stakeholder model. The local finance scales of those counties have been increased with local revenue enhancement. KangwonLand actively contributed to corporate social responsibility but it didn't actually help the local people. Most residents in that area negatively rate for the change of "the quality of life". By an itemized list, natural environment, local pride and expectation of future are relatively high, while participation of policy, increase in economic effects, relation of neighbor were lowest. and thus, we need to look for ways of improving the quality of life.

Effects of Soil Covering Depth and Vegetation Base Materials on the Growth of Lespedeza cyrtobotrya Miq. in Abandoned Coal Mine Land in Gangwon, Korea (폐석더미에서 복토 및 식생기반재 처리가 참싸리(Lespedeza cyrtobotrya Miq.)의 생장에 미치는 영향)

  • Kim, Jeong-Hwan;Lim, Joo-Hoon;Yi, Koong;Lee, Im-Kyun;Jeong, Yong-Ho
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.15 no.6
    • /
    • pp.61-67
    • /
    • 2012
  • This study was conducted to evaluate the effects of soil covering and vegetation base materials implementation on the growth of Lespedeza cyrtobotrya Miq. in abandoned coal mine land. We compared the biomass of L. cyrtobotrya at the study plots of four different soil covering depth (control, 10cm, 20cm, and 30cm) and four different compounds of vegetation base materials composed of soil conditioner (S), erosion control (E), and peat moss (P) (control, S+P, E+P, and S+E+P). The result showed that the biomass of L. cyrtobotrya was higher in the study plots implemented with soil covering than control plot, although the increase in biomass was not constant with soil covering depth. In case of the vegetation base materials treatments, the biomass was highest in S+E+P plot, and S+P and E+P plots showed higher biomass than control plot.

A Geophysical Survey of Subsidence area around Limestone Mine Sites (석회석 광산지역 지반침하 분석을 위한 물리탐사 기술 적용 연구)

  • Hong, Jinpyo;Ji, Yoonsoo;Oh, Seokhoon;Choi, Sungoong
    • Geophysics and Geophysical Exploration
    • /
    • v.18 no.4
    • /
    • pp.207-215
    • /
    • 2015
  • Electrical resistivity surveys were conducted at two subsidence areas near and at limestone mine sites, respectively, in order to estimate their causes of subsidence and the regions of potential occurrence. In addition, the linkages of mine development with these subsidences were investigated by the rock engineering analysis. Two study areas have different geological setting. One study site is the land subsidence area, which contains clay and sandy soil near the limestone mine, The other study site is the land subsidence area located just above the mine, which is expected to be relevant to the limestone mine. As results of two-dimensional (2D) electrical resistivity surveys at the sites 1 and 2, low resistivity zones, which are 70 ~ 120 ohm-m and 20 ~ 50 ohm-m, respectively, were found under the subsidence zones. For the study site 1, the possibility of subsidence was confirmed by using three-dimensional (3D) inversion performed with 2D resistivity profiles. For the study site 2, the cause of the subsidence and the possibility of subsidence occurrence were confirmed by rock engineering computation with regard to measurement line 7 in which low resistivity accompanied by subsidence area was observed.

Land Mine Detecting Technology by Using IR Cameras

  • Shimoi, Nobuhiro;Takita, Yoshihiro;Nonami, Kenzo;Wasaki, Katsumi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.28.4-28
    • /
    • 2001
  • This paper proposes an IR camera system that performs the task of removing mines for humanitarian purposes. Because of the high risks involved, it is necessary to conduct mine detection from the most remote endeavoring. By mating use of infrared ray (IR) cameras, scattered mines can be detected from remote locations. In the case of mines buried in the ground, detection is possible if the peripheral temperature difference is large enough between the ground and mine weapon. As one of the world´s advanced nations in sensor technology, Japan should promote surveys and studies for detecting mines safely by using its advanced remote sensing technologies.

  • PDF