• Title/Summary/Keyword: Land-cover

Search Result 1,421, Processing Time 0.025 seconds

Microbe Hunting: A Curious Case of Cryptococcus

  • Bartlett, Karen H.;Kidd, Sarah;Duncan, Colleen;Chow, Yat;Bach, Paxton;Mak, Sunny;MacDougall, Laura;Fyfe, Murray
    • Proceedings of the Korean Environmental Health Society Conference
    • /
    • 2005.06a
    • /
    • pp.45-72
    • /
    • 2005
  • C. neoformans-associated cryptococcosis is primarily a disease of immunocompromised persons, has a world-wide distribution, and is often spread by pigeons in the urban environment. In contrast, C. gattii causes infection in normal hosts, has only been described in tropical and semi-tropical areas of the world, and has a unique niche in river gum Eucalyptus trees. Cryptococcosis is acquired through inhalation of the yeast propagules from the environment. C. gattii has been identified as the cause of an emerging infectious disease centered on Vancouver Island, British Columbia, Canada. No cases of C. gattii-disease were diagnosed prior to 1999; the current incidence rate is 36 cases per million population. A search was initiated in 2001 to find the ecological niche of this basidiomycetous yeast. C. gaftii was found in the environment in treed areas of Vancouver Island. The highest percentage of colonized-tree clusters were found around central Vancouver Island, with decreasing rates of colonization to the north and south. Climate, soil and vegetation cover of this area, called the Coastal Douglas fir biogeoclimatic zone, is unique to British Columbia and Canada. The concentration of airborne C. gattii was highest in the dry summer months, and lowest during late fall, winter, and early spring, months which have heavy rainfall. The study of the emerging colonization of this organism and subsequent cases of environmentally acquired disease will be informative in planning public health management of new routes of exposure to exotic agents in areas impacted by changing climate and land use patterns. Cryptococcosis is an infection associated with an encapsulated, basidiomycetous yeast Cryptococcus neoformans. The route of entry for this organism is through the lungs, with possible systemic spread via the circulatory system to the brain and meninges. There are four cryptococcal serogroups associated with disease in humans and animals, distinguished by capsular polysaccharide antigens. Cryptococcus neoformans: variety grubii (serotype A), variety neoformans (serotype D), and variety gattii (serotypes B and C) (Franzot et at. 1999). C. neoformans variety gattii has recently been elevated to species status, C. gattii. C. neoformans val. grubii and var. neoformans have a world-wide distribution, and are particularly associated with soil and weathered bird droppings. In contrast, C. gattii (CG) is not associated with bird excrement, is primarily found in tropical and subtropical climates, and has a restricted environmental niche associated with specific tree species. (Ellis & Pfiffer 1990) Ellis and Pfeiffer theorize that, as a basidiomycete, CG requires an association with a tree in order to become pathogenic to mammals. In Australia, CG has been found to be associated with five species of Eucalypts, Eucalyptus camaldulensis, E. tereticornis, E. blakelyi, E. gomphocephala, and E. rudis. Eucalypts, although originally native to Australia, now have a world-wide distribution. CG has been found associated with imported eucalypts in India, California, Brazil, and Egypt. In addition, in Brazil and Columbia, where eucalypts have been naturalized, native trees have been shown to harbour CG (Callejas et al. 1998; Montenegro et al. 2000). In British Columbia, Canada, since the beginning of 1999, there have been 120 confirmed cases of cryptococcal mycoses associated with CG in humans, including 4 fatalities (data from British Columbia Centre for Disease Control), and over 200 cases in animal pets in BC (data from Central Laboratory for Veterinarians). What is remarkable about the BC outbreak of C. gattii-cryptococcosis is that all of the cases have been residents of, or visitors to, a narrow area along the eastern coast of Vancouver Island, BC, from the tip of the island in the south (Victoria) to Courtenay on the north-central island as illustrated in Figure 1. Of the first 38 human cases, 58% were male with a mean age of 59.7 years (range 20 - 82): 36 cases (95%) were Caucasian. Ten cases (26%) presented with meningitis, the remainder presented with respiratory symptoms. Cultures recovered from cases of cryptococcosis associated with the outbreak were typed as serogroup B, which is specific to CG (Bartlett et al. 2003). This was the first reported outbreak of CVG in Canada, or indeed, the world. Where infection with CG is endemic, for example, Australia, the incidence of cryptococcosis ranges from 1.8 - 4.7 per million between the southern and northern states (Sorrell 2001). However, the overall incidence of cryptococcosis in immunocompenent individuals has been estimated at 0.2 per million population per year (Kwon-Chung et al. 1984). The population of Vancouver Island is approximately 720,000,consequently, even if the organism were endemic, one would expect a maximum of 0.15 cases of cryptococcal disease annually.

  • PDF

LIM Implementation Method for Planning Biotope Area Ratio in Apartment Complex - Focused on Terrain and Pavement Modeling - (공동주택단지의 생태면적률 계획을 위한 LIM 활용방법 - 지형 및 포장재 모델링을 중심으로 -)

  • Kim, Bok-Young;Son, Yong-Hoon;Lee, Soon-Ji
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.46 no.3
    • /
    • pp.14-26
    • /
    • 2018
  • The Biotope Area Ratio (BAR) is a quantitative pre-planning index for sustainable development and an integrated indicator for the balanced development of buildings and outdoor spaces. However, it has been pointed out that there are problems in operations management: errors in area calculation, insufficiency in the underground soil condition and depth, reduction in biotope area after construction, and functional failure as a pre-planning index. To address these problems, this study proposes implementing LIM. Since the weights of the BAR are mainly decided by the underground soil condition and depth with land cover types, the study focused on the terrain and pavements. The model should conform to BIM guidelines and standards provided by government agencies and professional organizations. Thus, the scope and Level Of Detail (LOD) of the model were defined, and the method to build a model with BIM software was developed. An apartment complex on sloping ground was selected as a case study, a 3D terrain modeled, paving libraries created with property information on the BAR, and a LIM model completed for the site. Then the BAR was calculated and construction documents were created with the BAR table and pavement details. As results of the study, it was found that the application of the criteria on the BAR and calculation became accurate, and the efficiency of design tasks was improved by LIM. It also enabled the performance of evidence-based design on the terrain and underground structures. To adopt LIM, it is necessary to create and distribute LIM library manuals or templates, and build library content that comply with KBIMS standards. The government policy must also have practitioners submit BIM models in the certification system. Since it is expected that the criteria on planting types in the BAR will be expanded, further research is needed to build and utilize the information model for planting materials.

Site Characterization using Shear-Wave Velocities Inverted from Rayleigh-Wave Dispersion in Chuncheon, Korea (레일리파 분산을 역산하여 구한 횡파속도를 이용한 춘천시의 부지특성)

  • Jung, JinHoon;Kim, Ki Young
    • Geophysics and Geophysical Exploration
    • /
    • v.17 no.1
    • /
    • pp.1-10
    • /
    • 2014
  • To reveal and classify site characteristics in densely populated areas in Chuncheon, Korea, Rayleigh-waves were recorded at 50 sites including four sites in the forest area using four 1-Hz velocity sensors and 24 4.5-Hz vertical geophones during the period of January 2011 to May 2013. Dispersion curves of the Rayleigh waves obtained by the extended spatial autocorrelation method were inverted to derive shear-wave velocity ($v_s$) models comprising 40 horizontal layers of 1-m thickness. Depths to weathered rocks ($D_b$), shear wave velocities of these basement rocks ($v_s^b$), average velocities of the overburden layer ($\bar{v}_s^s$), and the average velocity to a depth of 30 m ($v_s30$), were then derived from those models. The estimated values of $D_b$, $v_s^b$, $\bar{v}_s^s$, and $v_s30$ for 46 sites at lower altitudes were in the ranges of 5 to 29 m, 404 to 561 m/s, 208 to 375 ms/s, and 226 to 583 m/s, respectively. According to the Korean building code for seismic design, the estimated $v_s30$ indicates that the lower altitude areas in Chuncheon are classified as $S_C$ (very dense soil and soft rock) or $S_D$ (stiff soil). To determine adequate proxies for $v_s30$, we compared the computed values with land cover, lithology, topographic slope, and surface elevation at each of the measurement sites. Due to a weak correlation (r = 0.41) between $v_s30$ and elevation, the best proxy of them, applications of this proxy to Chuncheon of a relatively small area seem to be limited.

Studies on the Development of Accelerating Measures of Establishment of Vegetation on Bare Slopes (황폐산지(荒廢山地)의 속성녹화공법개발(速成綠化工法開發)에 관(關)한 연구(硏究))

  • Woo, Bo-Myeong
    • Journal of Korean Society of Forest Science
    • /
    • v.24 no.1
    • /
    • pp.1-24
    • /
    • 1974
  • A national programme of erosion control for soil and water conservation needs to be based on factual information about rates and quantities of soil erosion and of water runoff. The best and simplest way of reducing sedimentation pollution is to prevent or control the erosion at its sources. Steeply sloping earth banks are liable to both surface erosion and land-slides and the key to the control of these form of erosion lies with drainages and dense vegetation establishment including surface mulching on the slopes. Micro-plots having $1.6m^2$ (1 metre in width and 1.6 metres in slope length, and 1:1.2 in gradient) of banking slopes on the coarse sand soil are used to establish the order of magnititude of the difference in controlling of soil erosion and water runoff, and in potentiality of execution in consideration of the values of landscapes, performed on the 2 repetetions of six-experiment plots consisted of five surface mulches including seedings and one bare slope as a control treatment. The main results obtained may be summarized as follows: 1. The significant difference is realized in the quantities of soil erosion between the measures of six treatments. 2. Excepting the differences between treatment III and VI, the significant difference is realized in the rate of surface runoff between each treatment measures. 3. Both measures of treatment II and IV are recognized as the most effective measures in controlling the soil erosion and water runoff and also in establishing the ground vegetation. (Treatment II is a measures of the coarse straw-mat mulchings on the micro-strip seedings, Treatment IV is a measures of the "SPRAY-ON method" on the micro-strip seedings). In consideration of the potentiality of execution as well as the value of landscapes, the measures of treatment II could be recommendable for establishing the vegetation cover on the denuded gentle slopes in hillsides while the measures of treatment IV could be suitable for accelerating the establishment of vegetation on steeply sloping earth banks and cuts.

  • PDF

Development of Solar Warehouse for Drying and Storing the Agricultural Products (농산물(農産物) 건조(乾燥) 및 저장(貯藏)을 위(爲)한 태양열(太陽熱) 저장고(貯藏庫)의 개발(開發)에 관(關)한 연구(硏究))

  • Kim, Man Soo;Chang, Kyu Seob;Kim, Soung Rai;Jeon, Byeong Seon
    • Korean Journal of Agricultural Science
    • /
    • v.9 no.1
    • /
    • pp.357-370
    • /
    • 1982
  • Recent concern regarding price and availability of fossil fuels has spurred the interest in alternative sources for farm crop drying. Among the available options such as biomass energy, wind power, nuclear energy and solar energy etc., the increasing attention is being directed to the utilization of heat from solar energy especially for farm crop drying. Even though solar energy is dispersed over a large land area and only a relatively small amount of energy can be simply collected, the advantages of solar energy is that the energy is free, non-polluting. The study reported here was designed to help supply the informations for the development of simple and relatively inexpensive solar warehouse for farm crop drying and storage. Specifically, the objectives of this study were to determine the performance of the solar collector fabricated, to compare solar supplemented heat drying with natural air drying and to develop a simulation model of temperature in stored grain, which can be used to study the effects due to changes in ambient air temperature. For those above objectives, solar collector was fabricated from available materials. Corrugated steel galvanized sheet, painted flat black, was used as absorbers and clear 0.2mm polyethylene sheet was the cover material. The warehouse for rough rice drying and storage was constructed with concrete block, and the solar collector was used as the roof of warehouse instead of original roofing system of it. The results obtained in this study were as follows: 1. The thermal efficiency of the solar collector was average 26 percent and the overall heat transfer coefficient of the collector was approximately $25kJ/hr.m^2\;^{\circ}K$. 2. Solar heated air was sufficient to dry one cubic meter of rough rice from 23.5 to 15.0 percent in 7 days and natural air was able to dry the same amount of rough rice from 20.0 to 5 percent in l2 days. 3. Drying with solar heat reduced the required drying time to dry the same amount of rough rice into a half compared to natural air drying, but overdrying problems of the bottom layer were so severe that these problems should be thoroughly analyzed. 4. Simulation model of temperature in stored grain was developed and the results of predicted temperature agreed well with test results. 5. Based on those simulated temperature, changes in the grain-temperature were a large at the points of the wallside and the damage of the grain would be severe at the contact area of wall.

  • PDF

USLE/RUSLE Factors for National Scale Soil Loss Estimation Based on the Digital Detailed Soil Map (수치 정밀토양에 기초한 전국 토양유실량의 평가를 위한 USLE/RUSLE 인자의 산정)

  • Jung, Kang-Ho;Kim, Won-Tae;Hur, Seung-Oh;Ha, Sang-Keon;Jung, Pil-Kyun;Jung, Yeong-Sang
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.37 no.4
    • /
    • pp.199-206
    • /
    • 2004
  • Factors of universal soil loss equation, USLE, and its revised version, RUSLE for Korean soils were reevaluated to estimate the national scale of soil loss based on digital soil maps. Rainfall erosivity factor, R, of 158 locations of cities and counties were spacially interpolated by the inverse distance weight method. Soil erodibility factor, K, of 1321 soil phases of 390 soil series were calculated using the data of soil survey and agri-environmental quality monitoring. Topographic factor, LS, was estimated using soil map of 1:25,000 scale with soil phase and land use type. Cover management factor, C, of major crops and support practice factor, P, were summarized by analyzing the data of lysimeter and field experiments for 27 years (1975-2001) in the National Institute of Agricultural Science and Technology. R factor varied between 2322 and 6408 MJ mm $ha^{-1}$ $yr^{-1}$ $hr^{-1}$ and the average value was 4276 MJ mm $ha^{-1}$ $yr^{-1}$ $hr^{-1}$. The average K value was evaluated as 0.027 MT hr $MJ^{-1}$ $mm^{-1}$. The highest K factor was found in paddy rice fields, 0.034 MT hr $MJ^{-1}$ $mm^{-1}$, and K factors in upland fields, grassland, and forest were 0.026, 0.019, and 0.020 MT hr $MJ^{-1}$ $mm^{-1}$, respectively. C factors of upland crops ranged from 0.06 to 0.45 and that of grassland was 0.003. P factor varied between 0.01 and 0.85.

A standardized procedure on building spectral library for hazardous chemicals mixed in river flow using hyperspectral image (초분광 영상을 활용한 하천수 혼합 유해화학물질 표준 분광라이브러리 구축 방안)

  • Gwon, Yeonghwa;Kim, Dongsu;You, Hojun
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.10
    • /
    • pp.845-859
    • /
    • 2020
  • Climate change and recent heat waves have drawn public attention toward other environmental issues, such as water pollution in the form of algal blooms, chemical leaks, and oil spills. Water pollution by the leakage of chemicals may severely affect human health as well as contaminate the air, water, and soil and cause discoloration or death of crops that come in contact with these chemicals. Chemicals that may spill into water streams are often colorless and water-soluble, which makes it difficult to determine whether the water is polluted using the naked eye. When a chemical spill occurs, it is usually detected through a simple contact detection device by installing sensors at locations where leakage is likely to occur. The drawback with the approach using contact detection sensors is that it relies heavily on the skill of field workers. Moreover, these sensors are installed at a limited number of locations, so spill detection is not possible in areas where they are not installed. Recently hyperspectral images have been used to identify land cover and vegetation and to determine water quality by analyzing the inherent spectral characteristics of these materials. While hyperspectral sensors can potentially be used to detect chemical substances, there is currently a lack of research on the detection of chemicals in water streams using hyperspectral sensors. Therefore, this study utilized remote sensing techniques and the latest sensor technology to overcome the limitations of contact detection technology in detecting the leakage of hazardous chemical into aquatic systems. In this study, we aimed to determine whether 18 types of hazardous chemicals could be individually classified using hyperspectral image. To this end, we obtained hyperspectral images of each chemical to establish a spectral library. We expect that future studies will expand the spectral library database for hazardous chemicals and that verification of its application in water streams will be conducted so that it can be applied to real-time monitoring to facilitate rapid detection and response when a chemical spill has occurred.

A Comparative Study on the Possibility of Land Cover Classification of the Mosaic Images on the Korean Peninsula (한반도 모자이크 영상의 토지피복분류 활용 가능성 탐색을 위한 비교 연구)

  • Moon, Jiyoon;Lee, Kwang Jae
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.6_4
    • /
    • pp.1319-1326
    • /
    • 2019
  • The KARI(Korea Aerospace Research Institute) operates the government satellite information application consultation to cope with ever-increasing demand for satellite images in the public sector, and carries out various support projects including the generation and provision of mosaic images on the Korean Peninsula every year to enhance user convenience and promote the use of satellite images. In particular, the government has wanted to increase the utilization of mosaic images on the Korean Peninsula and seek to classify and update mosaic images so that users can use them in their businesses easily. However, it is necessary to test and verify whether the classification results of the mosaic images can be utilized in the field since the original spectral information is distorted during pan-sharpening and color balancing, and there is a limitation that only R, G, and B bands are provided. Therefore, in this study, the reliability of the classification result of the mosaic image was compared to the result of KOMPSAT-3 image. The study found that the accuracy of the classification result of KOMPSAT-3 image was between 81~86% (overall accuracy is about 85%), while the accuracy of the classification result of mosaic image was between 69~72% (overall accuracy is about 72%). This phenomenon is interpreted not only because of the distortion of the original spectral information through pan-sharpening and mosaic processes, but also because NDVI and NDWI information were extracted from KOMPSAT-3 image rather than from the mosaic image, as only three color bands(R, G, B) were provided. Although it is deemed inadequate to distribute classification results extracted from mosaic images at present, it is believed that it will be necessary to explore ways to minimize the distortion of spectral information when making mosaic images and to develop classification techniques suitable for mosaic images as well as the provision of NIR band information. In addition, it is expected that the utilization of images with limited spectral information could be increased in the future if related research continues, such as the comparative analysis of classification results by geomorphological characteristics and the development of machine learning methods for image classification by objects of interest.

Review of Remote Sensing Studies on Groundwater Resources (원격탐사의 지하수 수자원 적용 사례 고찰)

  • Lee, Jeongho
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.5_3
    • /
    • pp.855-866
    • /
    • 2017
  • Several research cases using remote sensing methods to analyze changes of storage and dynamics of groundwater aquifer were reviewed in this paper. The status of groundwater storage, in an area with regional scale, could be qualitatively inferred from geological feature, surface water altimetry and topography, distribution of vegetation, and difference between precipitation and evapotranspiration. These qualitative indicators could be measured by geological lineament analysis, airborne magnetic survey, DEM analysis, LAI and NDVI calculation, and surface energy balance modeling. It is certain that GRACE and InSAR have received remarkable attentions as direct utilization from satellite data for quantification of groundwater storage and dynamics. GRACE, composed of twin satellites having acceleration sensors, could detect global or regional microgravity changes and transform them into mass changes of water on surface and inside of the Earth. Numerous studies in terms of groundwater storage using GRACE sensor data were performed with several merits such that (1) there is no requirement of sensor data, (2) auxiliary data for quantification of groundwater can be entirely obtained from another satellite sensors, and (3) algorithms for processing measured data have continuously progressed from designated data management center. The limitations of GRACE for groundwater storage measurement could be defined as follows: (1) In an area with small scale, mass change quantification of groundwater might be inaccurate due to detection limit of the acceleration sensor, and (2) the results would be overestimated in case of combination between sensor and field survey data. InSAR can quantify the dynamic characteristics of aquifer by measuring vertical micro displacement, using linear proportional relation between groundwater head and vertical surface movement. However, InSAR data might now constrain their application to arid or semi-arid area whose land cover appear to be simple, and are hard to apply to the area with the anticipation of loss of coherence with surface. Development of GRACE and InSAR sensor data preprocessing algorithms optimized to topography, geology, and natural conditions of Korea should be prioritized to regionally quantify the mass change and dynamics of the groundwater resources of Korea.

Wildfire Severity Mapping Using Sentinel Satellite Data Based on Machine Learning Approaches (Sentinel 위성영상과 기계학습을 이용한 국내산불 피해강도 탐지)

  • Sim, Seongmun;Kim, Woohyeok;Lee, Jaese;Kang, Yoojin;Im, Jungho;Kwon, Chunguen;Kim, Sungyong
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.5_3
    • /
    • pp.1109-1123
    • /
    • 2020
  • In South Korea with forest as a major land cover class (over 60% of the country), many wildfires occur every year. Wildfires weaken the shear strength of the soil, forming a layer of soil that is vulnerable to landslides. It is important to identify the severity of a wildfire as well as the burned area to sustainably manage the forest. Although satellite remote sensing has been widely used to map wildfire severity, it is often difficult to determine the severity using only the temporal change of satellite-derived indices such as Normalized Difference Vegetation Index (NDVI) and Normalized Burn Ratio (NBR). In this study, we proposed an approach for determining wildfire severity based on machine learning through the synergistic use of Sentinel-1A Synthetic Aperture Radar-C data and Sentinel-2A Multi Spectral Instrument data. Three wildfire cases-Samcheok in May 2017, Gangreung·Donghae in April 2019, and Gosung·Sokcho in April 2019-were used for developing wildfire severity mapping models with three machine learning algorithms (i.e., Random Forest, Logistic Regression, and Support Vector Machine). The results showed that the random forest model yielded the best performance, resulting in an overall accuracy of 82.3%. The cross-site validation to examine the spatiotemporal transferability of the machine learning models showed that the models were highly sensitive to temporal differences between the training and validation sites, especially in the early growing season. This implies that a more robust model with high spatiotemporal transferability can be developed when more wildfire cases with different seasons and areas are added in the future.