• Title/Summary/Keyword: Land-Use Area

Search Result 1,866, Processing Time 0.029 seconds

Extraction of paddy field in Jaeryeong, North Korea by object-oriented classification with RapidEye NDVI imagery (RapidEye 위성영상의 시계열 NDVI 및 객체기반 분류를 이용한 북한 재령군의 논벼 재배지역 추출 기법 연구)

  • Lee, Sang-Hyun;Oh, Yun-Gyeong;Park, Na-Young;Lee, Sung Hack;Choi, Jin-Yong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.56 no.3
    • /
    • pp.55-64
    • /
    • 2014
  • While utilizing high resolution satellite image for land use classification has been popularized, object-oriented classification has been adapted as an affordable classification method rather than conventional statistical classification. The aim of this study is to extract the paddy field area using object-oriented classification with time series NDVI from high-resolution satellite images, and the RapidEye satellite images of Jaeryung-gun in North Korea were used. For the implementation of object-oriented classification, creating objects by setting of scale and color factors was conducted, then 3 different land use categories including paddy field, forest and water bodies were extracted from the objects applying the variation of time-series NDVI. The unclassified objects which were not involved into the previous extraction classified into 6 categories using unsupervised classification by clustering analysis. Finally, the unsuitable paddy field area were assorted from the topographic factors such as elevation and slope. As the results, about 33.6 % of the total area (32313.1 ha) were classified to the paddy field (10847.9 ha) and 851.0 ha was classified to the unsuitable paddy field based on the topographic factors. The user accuracy of paddy field classification was calculated to 83.3 %, and among those, about 60.0 % of total paddy fields were classified from the time-series NDVI before the unsupervised classification. Other land covers were classified as to upland(5255.2 ha), forest (10961.0 ha), residential area and bare land (3309.6 ha), and lake and river (1784.4 ha) from this object-oriented classification.

The development of land use planning technique applying low impact development and verifying the effects of non-point pollution reduction : a case study of Sejong city 6 district (저영향개발(LID)을 적용한 토지이용계획 기법 개발 및 적용효과 분석 : 세종시 6생활권을 대상으로)

  • Kang, Ki-Hoon;Lee, Kyung-Hwan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.7
    • /
    • pp.548-553
    • /
    • 2017
  • The aim of this study was to develop a low impact development design technique that can be applied in the land use planning stage and verify quantitatively the effects of non-point pollution reduction. For this purpose, the low impact development design elements that can be applied in the land use planning stage were derived and applied to an actual site, and the non-point pollution reduction effect was analyzed using the LIDMOD2 program. The analysis showed that the permeability rate of the land use plan using low impact development decreased by 19.8% compared to the existing land use plan. In addition, annual surface runoff decreased by 19.0% and annual infiltration increased by 164.1%. In the case of non-point pollution, the annual loading, T-N, T-P, and BOD decreased by 18.7 ~ 22.8%. Therefore, compared to the existing land use plan, the land use plan using low impact development has a considerably large effect of reducing the non-point pollution without changing the floor area according to each application. Therefore, to maximize the reduction effect of non-point pollution, it will be necessary to establish a related plan by applying the low impact development technique from the land use planning stage to the existing LID facility-oriented plan.

A Basic Study on the Relationship between the Environmental Characteristics and Turbidity Generation in Jaun Watershed (자운천 유역 내 환경특성과 탁류발생의 관계성에 대한 기초연구)

  • Ham, Kwang-Jun;Bae, Sun-Hak;Kim, Joon Hyun;Park, Sung-Bin;Kim, Sung-Seok
    • Journal of Environmental Impact Assessment
    • /
    • v.15 no.4
    • /
    • pp.259-270
    • /
    • 2006
  • The purpose of this study is to understand the relation between the land use status in watersheds and stream turbidity. Major water quality components (flow rate, turbidity, SS, BOD, TN, TP, etc.) of two streams (Jaun and Naerin) and the land use status for each correspondent watershed have been analyzed through the field sampling and the geographical overlaying of land use and watershed map. The detailed results of this study showed that; turbidity has been increased rapidly from 1.9 to 13.0 NTU for Jaun Stream, 0.4 to 0.7 NTU for Naerin Stream, due to the increased flow rate during the period of June. The agricultural area of the Jaun watershed was $13.5km^2$ (10.1% of the overall watershed), comparing to $2.0km^2$(1.4%) of upper watershed of Naerin stream. The forest was widely distributed along the 30m buffering zone from the center of Naerin stream, which comprised 64.14% of the whole watershed area. But in case of the Jaun, the ratio of forest was 17.84%, while the ratio of farming field was 30.33%.

Developing Trip Generation Models Considering Land Use Characteristics (토지이용 특성을 반영한 통행발생모형 추정 연구)

  • Song, Jae-In;Na, Seung-Won;Choo, Sang-Ho
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.10 no.6
    • /
    • pp.126-139
    • /
    • 2011
  • In the traditional four-step travel demand models, each step is sequentially conducted following the model estimation at the previous step. The accuracy of the following model is partly dependent on whether the model at the former stage was properly established or not. Therefore, trip generation, which is the first step in this conventional model, has great effects on the modeling process and forecasting results. Linear regression models for trip generation of Seoul Metropolitan Area might increase the forcasting errors, since a variety of land-use characteristics are not considered. Hence, in this study, zonal factors such as socioeconomic and land use variables are included to improve the elaboration of trip generation. Comparing the %RMSE with the existing models, which contain bigger errors in the zones highly based on the secondary and tertiary industries than residence-based, the trip generation models including those variables seem more appropriate overall.

Assessment of Soil Erosion Loss by Using RUSLE and GIS in the Bagmati Basin of Nepal

  • Bastola, Shiksha;Seong, Yeon Jeong;Lee, Sang Hyup;Shin, Yongchul;Jung, Younghun
    • Journal of the Korean GEO-environmental Society
    • /
    • v.20 no.3
    • /
    • pp.5-14
    • /
    • 2019
  • This study attempted to study the soil erosion dynamic in the Bagmati Basin of Nepal. In this study, an inclusive methodology that combines Revised Universal Soil Loss Equation (RUSLE) and GIS techniques was adopted to determine the distribution of soil loss in the study basin. As well, this study attempts to study the intensity of soil erosion in the seven different land use patterns in the Bagmati Basin. Soil loss is an associated phenomenon of hydrologic cycle and this dynamic phenomenon possesses threats to sustainability of basin hydrology, agriculture system, hydraulic structures in operation and overall ecosystem in a long run. Soil conservation works, and various planning and design of watersheds works demands quantification of soil loss. The results of the study in Bagmati Basin shows the total annual soil loss in the basin is 22.93 million tons with an average rate of 75.83T/ha/yr. The computed soil loss risk was divided into five classes from tolerable to severe and the spatial pattern was mapped for easy interpretation. Also, evaluation of soil loss in different land use categories shows barren area has highest rate of soil loss followed by agriculture area. This is a preliminary work and provides erosion risk scenario in the basin. The study can be further used for strategic planning of land use and hydrologic conservation works in a basin.

The Influence on the Runoff Charateristics by the Land Use in Small Watersheds (II) (소유역의 토지이용이 유출특성에 미치는 영향 (II))

  • Choi, Ye-Hwan;Choi, Joong-Dae
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2005.05b
    • /
    • pp.178-182
    • /
    • 2005
  • In the forthcoming 21C, the development of cultural lives depends on that the water demand will increase or not. On the opposite site of that circumstance, many factors of the small watersheds will influence directly on how to cover the surface of watersheds with land use, no planning developing watersheds, and the rearrangement of small rivers. Especially as the extraordinary climatic Phenomena, exhaust of $CO_2$ and destruction of 03 layer, water resource and water foresting content of the small watersheds will be decreased by confusing on the malting a plan of water resources. For example, those are Typhoon Rusa in 2002, Typhoon Maemi in 2003 and heavy storms in 2004. This study area has three group and one of them having three small watersheds, total five small watersheds. That is, Sabukmyeon small watersheds in Chuncheon, Three small watersheds in Wonju(Jeoncheon, Jupocheon and Hasunamcheon), and Suipcheon in Yanggu-Gun which are located far away each other three group and different precipitation data. According to the land use such as dry field(or farm), rice field, forest land. building site and others in small watersheds, the amount of runoff will be impacted by monthly precipitation. The comparison between the runoff was getting from Kajiyama Formula and calculated runoff from multi-linear regressed equations by land use Percentage was performed with different precipitation data and different small watersheds. Its correlations which are estimated by coefficient of correlation will be accepted or not, as approached 1.0000 values. As the monthly water resources amount is estimated by multi-linear regressed equations with different precipitation data and different small watersheds having no gauging station, we make a plan in order to demand and supply the water quantity from small river watersheds during return periods.

  • PDF

Development of Pollutant Loading Estimation System using GIS (GIS를 이용한 유역별 오염부하량 산정시스템의 개발)

  • Ham, Kwang-Jun;Kim, Joon-Hyun;Shim, Jae-Min
    • Journal of Environmental Impact Assessment
    • /
    • v.14 no.3
    • /
    • pp.97-107
    • /
    • 2005
  • The purpose of this study is to develop a system, which estimates watershed pollutant loading rate through the combination of GIS and computational mode. Also, the applicability of this study was estimated by the application of the above system for Chuncheon City. The detailed results of these studies are as follows; The pollutant loading estimation system was developed for more convenient estimation of pollutant loading rate in watershed, and the system load was minimized by the separation of estimation module for point and non-point source. This system on the basis of GIS is very economical and efficient because it can be applied to other watershed with the watershed map. System modification is not needed. The pollutant loading estimation system for point source was developed to estimate the pollutant loading rate in watershed through the extraction of the proper data from all districts and yearly data and the execution of spatial analysis which is main function of GIS. From the verification result of spatial analysis, real watershed area and the administrative districtarea extracted by spatial analysis were $1,114,893,340.15m^2$ and $1,114,878,683.68m^2$, respectively. It shows that the spatial analysis results were very exact with only 0.001% error. The pollutant loading estimation system for non-point source was developed to calculate the pollutant loading rate through the overlaying of land-use and watershed map after the construction of new land-use map using the land register database with most exact land use classification. Application result for Chuncheon City shows that the proposed system results in one percent land use error while the statistical method results in five percent. More exact nonpoint source pollutant loading was estimated from this system.

Assessing the Impact of Sampling Intensity on Land Use and Land Cover Estimation Using High-Resolution Aerial Images and Deep Learning Algorithms (고해상도 항공 영상과 딥러닝 알고리즘을 이용한 표본강도에 따른 토지이용 및 토지피복 면적 추정)

  • Yong-Kyu Lee;Woo-Dam Sim;Jung-Soo Lee
    • Journal of Korean Society of Forest Science
    • /
    • v.112 no.3
    • /
    • pp.267-279
    • /
    • 2023
  • This research assessed the feasibility of using high-resolution aerial images and deep learning algorithms for estimating the land-use and land-cover areas at the Approach 3 level, as outlined by the Intergovernmental Panel on Climate Change. The results from different sampling densities of high-resolution (51 cm) aerial images were compared with the land-cover map, provided by the Ministry of Environment, and analyzed to estimate the accuracy of the land-use and land-cover areas. Transfer learning was applied to the VGG16 architecture for the deep learning model, and sampling densities of 4 × 4 km, 2 × 4 km, 2 × 2 km, 1 × 2 km, 1 × 1 km, 500 × 500 m, and 250 × 250 m were used for estimating and evaluating the areas. The overall accuracy and kappa coefficient of the deep learning model were 91.1% and 88.8%, respectively. The F-scores, except for the pasture category, were >90% for all categories, indicating superior accuracy of the model. Chi-square tests of the sampling densities showed no significant difference in the area ratios of the land-cover map provided by the Ministry of Environment among all sampling densities except for 4 × 4 km at a significance level of p = 0.1. As the sampling density increased, the standard error and relative efficiency decreased. The relative standard error decreased to ≤15% for all land-cover categories at 1 × 1 km sampling density. These results indicated that a sampling density more detailed than 1 x 1 km is appropriate for estimating land-cover area at the local level.

A Study on Groundwater Contamination Potential of Pyungtaek-Gun Area, Kyunggi-Do Using GIS (GIS를 이용한 경기도 평택군 지역의 지하수 오염 가능성 평가 연구)

  • 조시범;민경덕;우남칠;이사로
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.6 no.2
    • /
    • pp.87-94
    • /
    • 1999
  • This study is providing Modified DRASTIC Model to which lineament density and land use are added as additional factors using geographic infomation system(GIS). and then to evaluate groundwater contamination potential of Pyungtek-Gun area in Kyunggi-Do. In this study. the reason for using additional factors is because. in case of lineament density. when we consider that most of aquifer is bedrock aquifer in hydrogeologic environment of the Korea, lineament is very important to flow of groundwater and contamination material. and because land use can reflect indirectly impact of point or non_point source in study area. For statistical analysis. vector coverage per each factor is converted to grid layer and after each correlation coefficient between factors, covariance, variance. eigenvalue and eigenvector by principal component analysis of 3 direction. are calculated. correlation between factors is analyzed. Also after correlation coefficients between general DRASTIC layer and rated lineament density layer and between general DRASTIC layer and rated land use layer are calculated. final modified DRASTIC Model is constructed by using them with each weighting. when modified DRASTIC Model was compared with general DRASTIC Model, comtamination potential in modified DRASTIC Model is fairly detailed and consequently. vulnerable area which has high contamination potential could be presented concretly.

  • PDF

Fundarmental Studies on Regional Analysis of Potentiality for Conservation of Natural Park(II) -Analysis of Existing Natural Resources in Tokyo Province- (자연공원의 보호계획을 위한 광역적 토지자연의 분석에 관한 연구 (II) -잠재자연 및 현재자연과 보호를 위한 계획지침의 설정-)

  • 배병호
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.22 no.2
    • /
    • pp.39-52
    • /
    • 1994
  • Existing natural resources were analyzed in regional scale in order to suggest natural park guidelines as a previous step of conservation plan. Results of both existing natural resources and land potentiality in preceding paper were combined to suggest comprehensive and qualitative method for understanding of natural land. Regional characteristics of natural park were, then, analyzed by this method, and specific planning guidelines were discussed. The existing natural resources were analyzed by the degree of location quotient, which were found by comparison of the grade of vegetation naturalness and the bio-physical land unit in preceding paper. Then, allowance of existing natural resources was identified, and importance of protection was described based on this result. The bio-physical land unit on Tokyo Province was found to be composed by smaller land units, which had a variety of relationship with grade of vegetation naturalness: from the specific(1st) to many stages(5th). This meant a characteric of each land unit. By this combined approach, the characteristics and spatial distribution of natural land were discussed in the regional scale, and characteristic of nateral park were analyzed in terms of natural location. National park were located in the land unit where both land capability and importance of portection were the 6th. Quasi national park and 1 province natural park were located in the land unit where land capability was the 6th and importance of protection were the 5th. Seven province natural parks were located in the land unites were both criteria under the 5th were mixed. based on the results of this study, the followings were suggested for specific planning guidelines in the case of Takao quasi nation park: (a) conservative land use within the limit of carrying capacity of this area by the conservation of biotic and abiotic natural resources, (b) conservation of both natural and semi-natural vegetation, (c) utilization of this area as a urban forest.

  • PDF