• Title/Summary/Keyword: Land use/cover change

Search Result 206, Processing Time 0.027 seconds

Effects of Land Cover Change on Summer Urban Heat Island Intensity and Heat Index in Seoul Metropolitan Area, Korea (서울 수도권 지역의 토지 피복 변화가 여름철 도시열섬 강도와 체감온도에 미치는 영향)

  • Hong, Seon-Ok;Byon, Jae-Young;Kim, Do-Hyeong;Lee, Sang-Sam;Kim, Yeon-Hee
    • Atmosphere
    • /
    • v.31 no.2
    • /
    • pp.143-156
    • /
    • 2021
  • This study investigates the impacts of land cover change due to urbanization on the Urban Heat Island Intensity (UHII) and the Heat Index (HI) over the Seoul metropolitan area using the Unified Model (UM) with the Met Office Reading Urban Surface Exchange Scheme (MORUSES) during the heat wave from 16, July to 5, August 2018. Two simulations are performed with the late 1980s land-use (EXP1980) and the late 2000s land-use (EXP2000). EXP2000 is verified using Automatic Weather Station (AWS) data from 85 points in the study area, and observation sites are classified into two categories according to the urban fraction change over 20 years; Category A is 0.2 or less increase, and Category B is 0.2 or more increase. The 1.5-m temperature and relative humidity in Category B increase by up to 1.1℃ and decreased by 7% at 1900 LST and 2000 LST, respectively. This means that the effect of the urban fraction changes is higher at night. UHII increases by up to 0.3℃ in Category A and 1.3℃ in Category B at 1900 LST. Analysis of the surface energy balance shows that the heat store for a short time during the daytime and release at nighttime with upward sensible heat flux. As a result of the HI, there is no significant difference between the two experiments during the daytime, but it increases 1.6℃ in category B during the nighttime (2200 LST). The results indicate that the urbanization increase both UHII, and HI, but the times of maximum difference between EXP1980 and EXP2000 are different.

A Spatio-temporal Change Analysis of Rural Landscape Patterns using Landscape Ecology Indices : Focused on a Part of Gyeonggi-do (경관생태지수를 활용한 농촌경관의 시계열적 변화 분석 - 경기도 일부 시.군을 대상으로 -)

  • Oh, Yun-Gyeong;Choi, Jin-Yong;Bae, Seung-Jong;Jang, Min-Won
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.49 no.6
    • /
    • pp.65-76
    • /
    • 2007
  • Studies in landscape ecology have emphasized on the relationship between landscape patterns and shapes. A variety of landscape metrics has been developed so far to quantify landscape structures. Therefore, their developments and widespread applications become possible with the advent of spatial information systems including geographic information systems(GIS) and remote sensing. This study is to grasp the change of land use and landscape ecology indices, and to analyze the change of landscape structure in a part of Gyeonggi-do during 15 years from 1985 to 2000. Green-area distribution maps and agricultural-area distribution maps for the analysis were reconstructed from land cover maps constructed by WAMIS(Water Management Information System). And then, 4 landscape ecology indices(TA, LPI, SHAPE_AM, CAI_MN) for the green-area and 5 landscape ecology indices(TA, PD, LPI, LSI, CAI_MN) for the agricultural-area were selected by using pearson correlation analysis. According to the spatio-temporal change analysis using landscape ecology indices, the green-area fragmentation of Yongin was the most severe of the study area and the agricultural-area fragmentation of Gwangju and Namyangju was more severe than any other regions.

GIS DETECTION AND ANALYSIS TECHNIQUE FOR ENVIRONMENTAL CHANGE

  • Suh, Yong-Cheol;Choi, Chul-Uong;Kim, Ji-Yong;Kim, Tae-Woo
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.163-168
    • /
    • 2008
  • KOMPSAT-3 is expected to provide data with 80-cm spatial resolution, which can be used to detect environmental change and create thematic maps such as land-use and land-cover maps. However, to analyze environmental change, change-detection technologies that use multi-resolution and high-resolution satellite images simultaneously must be developed and linked to each other. This paper describes a GIS-based strategy and methodology for revealing global and local environmental change. In the pre-processing step, we performed geometric correction using satellite, auxiliary, and training data and created a new classification system. We also describe the available technology for connecting global and local change-detection analysis.

  • PDF

Structural Urban Landscape Changes over Time Series in Gangneung-Si (강릉시 도시 경관 구조의 시계열적 변화 연구)

  • Yeum, Jung-Hun
    • Journal of Environmental Science International
    • /
    • v.30 no.10
    • /
    • pp.779-787
    • /
    • 2021
  • This study analyzes structural landscape changes over a time-series for a small and medium-sized city, Gangneung-Si, based on area and distribution patterns, and according to the type of land cover. Among the types of land cover, the area ratio of urbanized areas increased by 2.02% in the late 2010s as compared to the late 1980s, while there was a decrease of 2.69% in farmland and 0.69% in grassland areas. On analyzing the changes in land cover use by applying the Fragstats program, it was confirmed that landscape changes in urban and management areas were relatively severe according to the Landscape Shape Index, Largest Patch Index, and Aggregation Index. A pattern of concentrated expansion was also found around certain areas. In particular, from the analysis, it was established that the proportion of urbanized area had considerably increased and that the extent of farmland damage to management areas, including planned management areas, was large. Additionally, the Total Core Area generally indicated a reduction in the core areas of farmland and forest within urban and management areas. A medium-sized city showed significant changes besides large cities in terms of landscape structure. The developmental pressure on management areas, in particular, was quite high.

Detecting Land Use Changes in an Urban Area using LANDSAT TM and JERS-1 OPS Imagery (LANDSAT TM과 JERS-1 OPS 영상을 이용한 도시지역의 토지이용 변화 검출)

  • Lee, Jin-Duk;Yeon, Sang-Ho;Ryu, Jae-Yup;Kim, Sung-Gil
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.2 no.1
    • /
    • pp.73-83
    • /
    • 1999
  • The land use/cover information, which is periodically obtained from satellite imagery, can be effectively applied to change detection in rapidly changing urban areas. Also it can be used not only as base maps for spatial database in urban information system but as decision-making data for desired urban planning and development direction. In this study, we carried out both unsupervised and supervised classification on land use from Landsat TM and JERS-1 OPS data, which were collected respectively in 1991 and 1997, covering Kumi City and then detected land use changes.

  • PDF

Monitoring of Agriculture land in Egypt using NOAA-AVHRR and SPOT Vegetation data

  • Shalaby, A.;Ghar, M. Aboel;Tateishi, R.
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.18-20
    • /
    • 2003
  • Land cover change detection is one of the most important trends in which remote sensing data could be used to assist strategists and the planners to decide the best land use policy. Two images of NOAA-AVHRR and SPOT vegetation acquired in November 1992 and 2002 were used to assess the changes of Agricultural lands in Egypt. A supervised classification together with two change images derived from classification result and NDVI were used to evaluate the trend and form of the change. It was found that agricultural areas increased by about 14.3 % during the study period in particular around the River Nile Delta and near the Northern Lakes of Egypt. The new cultivated lands were extracted mainly from the desert and from the salt marches areas. At the same time, parts of the agricultural lands were turned into non-cultivated land because of the urban expansion and soil degradation.

  • PDF

Change Analysis of Aboveground Forest Carbon Stocks According to the Land Cover Change Using Multi-Temporal Landsat TM Images and Machine Learning Algorithms (다시기 Landsat TM 영상과 기계학습을 이용한 토지피복변화에 따른 산림탄소저장량 변화 분석)

  • LEE, Jung-Hee;IM, Jung-Ho;KIM, Kyoung-Min;HEO, Joon
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.18 no.4
    • /
    • pp.81-99
    • /
    • 2015
  • The acceleration of global warming has required better understanding of carbon cycles over local and regional areas such as the Korean peninsula. Since forests serve as a carbon sink, which stores a large amount of terrestrial carbon, there has been a demand to accurately estimate such forest carbon sequestration. In Korea, the National Forest Inventory(NFI) has been used to estimate the forest carbon stocks based on the amount of growing stocks per hectare measured at sampled location. However, as such data are based on point(i.e., plot) measurements, it is difficult to identify spatial distribution of forest carbon stocks. This study focuses on urban areas, which have limited number of NFI samples and have shown rapid land cover change, to estimate grid-based forest carbon stocks based on UNFCCC Approach 3 and Tier 3. Land cover change and forest carbon stocks were estimated using Landsat 5 TM data acquired in 1991, 1992, 2010, and 2011, high resolution airborne images, and the 3rd, 5th~6th NFI data. Machine learning techniques(i.e., random forest and support vector machines/regression) were used for land cover change classification and forest carbon stock estimation. Forest carbon stocks were estimated using reflectance, band ratios, vegetation indices, and topographical indices. Results showed that 33.23tonC/ha of carbon was sequestrated on the unchanged forest areas between 1991 and 2010, while 36.83 tonC/ha of carbon was sequestrated on the areas changed from other land-use types to forests. A total of 7.35 tonC/ha of carbon was released on the areas changed from forests to other land-use types. This study was a good chance to understand the quantitative forest carbon stock change according to the land cover change. Moreover the result of this study can contribute to the effective forest management.

Regional land cover patterns, changes and potential relationships with scaled quail (Callipepla squamata) abundance

  • Rho, Paikho;Wu, X. Ben;Smeins, Fred E.;Silvy, Nova J.;Peterson, Markus J.
    • Journal of Ecology and Environment
    • /
    • v.38 no.2
    • /
    • pp.185-193
    • /
    • 2015
  • A dramatic decline in the abundance of the scaled quail (Callipepla squamata) has been observed across most of its geographic range. In order to evaluate the influence of land cover patterns and their changes on scaled quail abundance, we examined landscape patterns and their changes from the 1970s to the1990s in two large ecoregions with contrasting population trends: (1) the Rolling Plains ecoregion with a significantly decreased scaled quail population and (2) the South Texas Plains ecoregion with a relatively stable scaled quail population. The National Land Cover Database (NLCD) and the U.S. Geological Survey's (USGS) Land Use/Land Cover data were used to quantify landscape patterns and their changes based on 80 randomly located $20{\times}20km^2$ windows in each of the ecoregions. We found that landscapes in the Rolling Plains and the South Texas Plains were considerably different in composition and spatial characteristics related to scaled quail habitats. The landscapes in the South Texas Plains had significantly more shrubland and less grassland-herbaceous rangeland; and except for shrublands, they were more fragmented, with greater interspersion among land cover classes. Correlation analysis between the landscape metrics and the quail-abundance-survey data showed that shrublands appeared to be more important for scaled quail in the South Texas Plains, while grassland-herbaceous rangelands and pasture-croplands were essential to scaled quail habitats in the Rolling Plains. The decrease in the amount of grassland-herbaceous rangeland and spatial aggregation of pasture-croplands has likely contributed to the population decline of scaled quails in the Rolling Plains ecoregion.

Updating Land Cover Classification Using Integration of Multi-Spectral and Temporal Remotely Sensed Data (다중분광 및 다중시기 영상자료 통합을 통한 토지피복분류 갱신)

  • Jang, Dong-Ho;Chung, Chang-Jo F.
    • Journal of the Korean Geographical Society
    • /
    • v.39 no.5 s.104
    • /
    • pp.786-803
    • /
    • 2004
  • These days, interests on land cover classification using not only multi-sensor data but also thematic GIS information, are increasing. Often, although we have useful GIS information for the classification, the traditional classification method like maximum likelihood estimation technique (MLE) does not allow us to use the information due to the fact that the MLE and the existing computer programs cannot handle GIS data properly. We proposed a new method for updating the image classification using multi-spectral and multi-temporal images. In this study, we have simultaneously extended the MLE to accommodate both multi-spectral images data and land cover data for land cover classification. In addition to the extended MLE method, we also have extended the empirical likelihood ratio estimation technique (LRE), which is one of non-parametric techniques, to handle simultaneously both multi-spectral images data and land cover data. The proposed procedures were evaluated using land cover map based on Landsat ETM+ images in the Anmyeon-do area in South Korea. As a result, the proposed methods showed considerable improvements in classification accuracy when compared with other single-spectral data. Improved classification images showed that the overall accuracy indicated an improvement in classification accuracy of $6.2\%$ when using MLE, and $9.2\%$ for the LRE, respectively. The case study also showed that the proposed methods enable the extraction of the area with land cover change. In conclusion, land cover classification produced through the combination of various GIS spatial data and multi-spectral images will be useful to involve complementary data to make more accurate decisions.

The Characteristics of Land Use Change at the Urban Fringe - The Case of Daegu Metropolitan City - (대도시 주변 신개발지의 개발특성에 관한 연구 - 대구광역시를 사례지역으로 -)

  • Park, Sun-Hyung;Kim, Jae-Ik
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.10 no.2
    • /
    • pp.36-46
    • /
    • 2007
  • The primary purpose of this study is to identify the characteristics of land use change at the urban fringe. For this purpose, the Daegu Metropolitan City is selected as a study area. Land use changes between 1990 and 2000 in fringe areas are identified by processing Landsat TM5 imageries. The main findings are follows: First, land development has been driven by residential development, especially large-scale residential development encouraged by the two-million housing construction plan. Second, the type and size of the land use conversion are not identical across the study area. For example, the main land use type of the newly developed area of Buk-gu is residential use while that of Suseong-gu is public use. Third, most of residential development type is a high-density development which is quite different from American type of low-density development.

  • PDF