• 제목/요약/키워드: Land surface temperature

검색결과 527건 처리시간 0.029초

기후변화와 농업생산의 전망과 대책 (Climate Change and Coping with Vulnerability of Agricultural Productivity)

  • 윤성호;임정남;이정택;심교문;황규홍
    • 한국농림기상학회지
    • /
    • 제3권4호
    • /
    • pp.220-237
    • /
    • 2001
  • Over the 20th century global temperature increase has been 0.6$^{\circ}C$. The globally averaged surface temperature is projected to increase by 1.4 to 5.8$^{\circ}C$ over the period 1990 to 2100. Nearly all land areas will have higher maximum temperature and minimum temperature, and fewer cold days and frost days. More intense precipitation events will take plate over many areas. Over most mid-latitude continental interiors will have increased summer continental drying and associated risk of drought. By 2100, if the annual surface temperature increase is 3.5$^{\circ}C$, we will have 15.9$^{\circ}C$ from 12.4$^{\circ}C$ at present. Also the annual precipitation will range 1,118-2,447 mm from 972-1,841 mm at present in Korea. Consequently the average crop periods for summer crops will be 250 days that prolonged 32 days than at present. In the case of gradual increase of global warming, an annual crop can be adapted to the changing climate through the selection of filial generations in breeding process. The perennial crops such as an apple should be shifted the chief producing place to northern or high latitude areas where below 13.5$^{\circ}C$ of the annual surface temperature. If global warming happens suddenly over the threshold atmospheric greenhouse gases, then all ecosystems will have tremendous disturbance. Agricultural land-use plan, which state that farmers decide what to plant, based on their climate-based advantages. Therefore, farmers will mitigate possible negative imparts associated with the climate change. The farmers will have application to use agricultural meteorological information system, and agricultural long-range weather forecast system for their agroecosystems management. The ideal types of crops under $CO_2$ increase and climate change conditions are considered that ecological characteristics need indispensable to accomplish the sustainable agriculture as the diversification of genetic resources from yield-oriented to biomass-oriented characteristics with higher potential of $CO_2$ absorption and primary production. In addition, a heat-and-cold tolerance, a pest resistance, an environmental adaptability, and production stability should be also incorporated collectively into integrated agroecosystem.

  • PDF

LM3V 지면모델의 국내 적용성 평가를 위한 유출량 및 질소 모의 연구 (Study on Simulation of Runoff and Nitrogen for Application of LM3V Model in South Korea)

  • 정충길;김성준
    • 한국농공학회논문집
    • /
    • 제59권4호
    • /
    • pp.1-15
    • /
    • 2017
  • Eutrophication of surface waters is of concern worldwide, because it can result in many undesirable water-quality and ecological problems, such as hypoxic 'dead' zones and harmful algal blooms, both associated with considerable economic costs. In this study, we used LSM (Land Surface Model) to simulate nitrogen in five major rivers in the Southern Korean Peninsula. The main objective of this research was to enhance nitrogen data for input of LM3V model in South Korea. Input data for nitrogen fluxes were categorized into three sections including agriculture fertilizer, livestock manure, atmosphere deposition, biological fixation, and sewage pollutants were used as the nitrogen input. For using LM3V model, the nitrogen input data were regenerated by considering states of agriculture and industry in South Korea at a $1/8^{\circ}$ resolution. Then, we simulated stream/river flows and N loads throughout the entire drainage networks in South Korea at a $1/8^{\circ}$ resolution. By using the same parameters for the entire country ($100,210km^2$), composed of 5 river basins with varying climate and land use, the model simulates spatial (11 sites) and temporal (1999~2010) patterns of flows and nitrate-N loads are resonable by comparing observed flow and nitrate-N loads. The r (Pearson's linear correlation) for water temperature, flow and nitrate-N at river were 080~0.93, 0.62~0.92 and 0.5~0.9 respectively. Based on enhanced N input data and model results, we find that LM3V model as land surface model can be applied in South Korea with interaction of atmosphere and land conditions.

장래 기후변화와 토지이용 변화에 따른 농촌소유역의 수문 영향 분석 (Climate and Land use Changes Impacts on Hydrology in a Rural Small Watershed)

  • 김학관;강문성;이은정;박승우
    • 한국농공학회논문집
    • /
    • 제53권6호
    • /
    • pp.75-84
    • /
    • 2011
  • The objective of this study is to evaluate the hydrologic impacts of climate and land use changes in a rural small watershed. HadCM3 (Hadley Centre Coupled Model, ver.3) A2 scenario and LARS-WG (Long Ashton Research Station - Weather Generator) were used to generate future climatic data. Future land use data were also generated by the CA-Markov (Cellular Automata-Markov) method. The Soil and Water Assessment Tool (SWAT) model was used to evaluate hydrologic impacts. The SWAT model was calibrated and validated with stream flow measured at the Baran watershed in Korea. The SWAT model simulation results agreed well with observed values during the calibration and validation periods. In this study, hydrologic impacts were analyzed according to three scenarios: future climate change (Scenario I), future land use change (Scenario II), and both future climate and land use changes (Scenario III). For Scenario I, the comparison results between a 30-year baseline period (1997~2004) and a future 30-year period (2011~2040) indicated that the total runoff, surface runoff, lateral subsurface runoff, groundwater discharge, and evapotranspiration increased as precipitation and temperature for the future 30-year period increased. The monthly variation analysis results showed that the monthly runoff for all months except September increased compared to the baseline period. For Scenario II, both the total and surface runoff increased as the built-up area, including the impervious surface, increased, while the groundwater discharge and evapotranspiration decreased. The monthly variation analysis results indicated that the total runoff increased in the summer season, when the precipitation was concentrated. In Scenario III, the results showed a similar trend to that of Scenario II. The monthly runoff for all months except October increased compared to the baseline period.

엔진 물통로 내부 벽면 스케일 축적이 LPG 엔진의 열적 내구성에 미치는 영향에 대한 연구 (A Study on Effect of Scale Formation in Water Jacket on Thermal Durability in LPG Engine)

  • 류택용;신승용;최재권
    • 한국자동차공학회논문집
    • /
    • 제9권3호
    • /
    • pp.42-50
    • /
    • 2001
  • In this paper, the effects of scale formation in engine water jacket upon the thermal durability of engine itself and its component parts were studied. To understand the effect of quality of water, a full load engine endurance test for 50 hours was carried out with not-treated underground water. The followings were found through the tested engine inspection after the endurance test; 1-2 mm thick scale formation in the engine water jacket, valve seat wear, piston top land scuffing, piston pin stick, and cylinder bore scuffing in siamese area. In order to understand the causes of above test results, the heat rejection rate to coolant, the metal surface temperature of combustion chamber, and the oil and exhaust gas temperatures were measured and analyzed. The scale formed in the engine water jacket played a role as thermal insulator. The scale formed in the engine reduced the heat rejection rate to coolant and it caused to increase the metal surface temperature. The reduced heat rejection rate to coolant increased the heat rejection rate to oil and exhaust gas and increased the oil and exhaust gas temperature. Also, the reasons of valve seat wear, piston top land scuffing and cylinder bore scuffing, and piston pin stick quantitatively analyzed in this paper.

  • PDF

Terra MODIS 위성영상과 SEBAL 모형을 이용한 공간증발산량 산정 연구 - 용담댐 유역을 대상으로 - (Estimation of Spatial Evapotranspiration Using Terra MODIS Satellite Image and SEBAL Model - A Case of Yongdam Dam Watershed -)

  • 이용관;김상호;안소라;최민하;임광섭;김성준
    • 한국지리정보학회지
    • /
    • 제18권1호
    • /
    • pp.90-104
    • /
    • 2015
  • 본 연구의 목적은 위성영상을 이용해 시공간 증발산량을 모의할 수 있는 증발산량 산정 모형을 구축하고, 플럭스 타워 실측 증발산량과 비교를 통해 적용성을 평가하는데 있다. 증발산량 산정 모형은 SEBAL(Surface Energy Balance Algorithm for Land)을 구축하였으며, 모형 내 일부 알고리즘을 수정하여 적용하였다. SEBAL 모형의 위성 입력 자료로는 2개년(2012-2013)의 MODIS Normal Distribution Vegetation Index(NDVI), Albedo, Land Surface Temperature(LST) 영상을 500m의 공간해상도로 구축하였으며, 유역주변 기상청 기상관측소(5개 지점)의 풍속, 풍속측정높이, 일사량 자료를 내삽(Interpolation)하여 활용하였다. 모형의 적용성 평가를 위하여 금강유역의 용담댐을 대상으로 공간 증발산량을 산정하여 유역 내에 위치한 덕유산 플럭스 타워의 산림 증발산량과 비교분석하였다. 모형 매개변수 중 Albedo와 NDVI, 지표 거칠기(Surface roughness) 순으로 민감한 것으로 분석되었으며, 모형의 보정을 위해 최종적으로 Albedo와 NDVI는 월별 평균값을 적용하였다. 모의 기간 동안의 결정계수($R^2$)는 0.45이었다. SEBAL 모형은 특히 지형적 특성을 반영하므로 유역내에서 고지대에 비해 저지대에서 증발산량이 높게 산정되는 경향을 보였다.

대기 안정도와 지표면 온도가 미세규모 국지 흐름에 미치는 영향: 수문지역을 대상으로 (Effects of Atmospheric Stability and Surface Temperature on Microscale Local Airflow in a Hydrological Suburban Area)

  • 박수진;김도용;김재진
    • 대기
    • /
    • 제23권1호
    • /
    • pp.13-21
    • /
    • 2013
  • In this study, the effects of atmospheric stability and surface temperature on the microscale local airflow are investigated in a hydrological suburban area using a computational fluid dynamics (CFD) model. The model domain includes the river and industrial complex for analyzing the effect of water system and topography on local airflow. The surface boundary condition is constructed using a geographic information system (GIS) data in order to more accurately build topography and buildings. In the control experiment, it is shown that the topography and buildings mainly determine the microscale airflow (wind speed and wind direction). The sensitivity experiments of atmospheric stability (neutral, stable, and unstable conditions) represent the slight changes in wind speed with the increase in vertical temperature gradient. The differential heating of ground and water surfaces influences on the local meteorological factors such as air temperature, heat flow, and airflow. These results consequentially suggest that the meteorological impact assessment is accompanied by the changes of background land and atmospheric conditions. It is also demonstrated that the numerical experiments with very high spatial resolution can be useful for understanding microscale local meteorology.

대규모 도시 재개발에 따른 기상환경변화 (The Changes of Meteorological Environment by Urban Development)

  • 김근회;김연희;구해정;김규랑;정현숙
    • 대기
    • /
    • 제24권1호
    • /
    • pp.69-76
    • /
    • 2014
  • Urbanization affects the local thermal environment due to the large scale land use changes. To investigate the weather environment change of large scale urban redevelopment, 9 surface temperature and humidity observations were accomplished at Eunpyeong new town area. The observation period is from March 2007 to February 2010. In the center of development area, the air temperature has increased and relative humidity has decreased, by the changes of the land cover and building construction. In the area where the green zone is maintained, air temperature and relative humidity were not changed significantly. The air temperature and relative humidity for the other development observation stations is decreased and increased, respectively. The relative temperature difference between study area and a neighboring rural location was increased during observation periods. The difference is the highest during winter. The urban-rural minimum temperature difference was increased at development area, which means that urbanization affects increasing of minimum temperature in study area.

Mitigating the Urban Heat Island Phenomenon Using a Water-Retentive Artificial Turf System

  • Tebakari, Taichi;Maruyama, Tatsuya;Inui, Masahiro
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2010년도 학술발표회
    • /
    • pp.91-100
    • /
    • 2010
  • To investigate the thermal properties of a water-retentive artificial turf system (W-ATS), we estimated hydrologic parameters including thermal conductivity, heat capacity, and surface albedo for both the W-ATS and natural grass. We used a model experiment to measure surface temperature and evaporation for both the W-ATS and natural grass. We found that the W-ATS had lower thermal conductivity than natural grass did, and it was difficult for the W-ATS to convey radiant heat to the ground. Compared to natural grass, the W-ATS also had lower heat capacity, which contributed to its larger variation in surface temperature: the W-ATS had higher surface temperatures during daytime and lower surface temperatures during nighttime. The albedo of the W-ATS was one-quarter that of natural grass, and reflected shortwave radiation from the W-ATS surface was lower than that from the surface of natural grass. These results indicate that the W-ATS caused the soil temperature to increase. Furthermore, evaporation from the W-ATS was one-quarter the value of evapotranspiration from natural grass.

  • PDF

UAV 열적외 영상을 활용한 피복재질별 표면온도 특성 분석 (Analysis of Surface Temperature Characteristics by Land Surface Fabrics Using UAV TIR Images)

  • 송봉근;김경아;서경호;이승원;박경훈
    • 한국지리정보학회지
    • /
    • 제21권3호
    • /
    • pp.162-175
    • /
    • 2018
  • 본 연구는 도시 열환경 문제를 개선하기 위해 UAV 영상 표면온도 자료를 이용하여 피복재질별 표면온도 특성을 분석하였다. 그리고 UAV 영상 표면온도를 유사한 시기에 측정된 현장 실측 표면온도와 비교하였다. UAV 영상과 실측 표면온도와 비교한 결과, 가장 큰 차이를 보이는 피복재질은 회색 콘크리트 지붕 재질로 약 $7.8^{\circ}C$로 나타났다. 우레탄은 $0.3^{\circ}C$ 차이로 가장 적었다. 산점도를 분석한 결과 설명력이 63.75%로 상관성이 높은 것으로 분석되었다. 표면온도가 가장 높은 재질은 금속지붕으로 $48.9^{\circ}C$로 나타났고, 우레탄($43.4^{\circ}C$), 회색 콘크리트 지붕($42.9^{\circ}C$) 순이었다. 표면온도가 낮은 재질은 나지($30.2^{\circ}C$), 수목 및 잔디($30.2^{\circ}C$), 흰색 콘크리트 지붕($34.9^{\circ}C$)이었다. UAV 영상 표면온도 자료는 피복재질의 열적특성을 정밀하게 분석 가능하였다. 향후, 실측자료와의 비교를 통해 UAV 영상의 정확성 검 보정과 위성영상과 연계하여 UAV 영상 자료의 활용성을 확대할 필요가 있다.

수도권지역 대기질 예측을 위한 기상장 모델의 바람장과 온도장 비교 연구 (Intercomparison of Wind and Air Temperature Fields of Meteorological Model for Forecasting Air Quality in Seoul Metropolitan Area)

  • 정주희;김유근;문윤섭;황미경
    • 한국대기환경학회지
    • /
    • 제23권6호
    • /
    • pp.640-652
    • /
    • 2007
  • The MM5, RAMS and WRF, meteorological models have provided the dynamical parameters as inputs to air quality model. A major content of this study is that significant characteristics of three models for high-ozone occurrence analyze for surface wind and air temperature fields and compare with observation data in Seoul metropolitan area. An analysis of air temperature field revealed that location of core in high temperature of MM5 and WRF differed from that of RAMS. MM5 and WRF indicated high temperature in Seoul but RAMS represented it on the outskirts of Seoul. MM5 and WRF were underestimated maximum temperature during daytime but RAMS simulated similar value with observation data. Surface wind field with three models, it was shown many differences at horizontal distribution of wind direction. RAMS indicated weak wind speed in land and strong sea breeze at coastal areas than MM5 and WRF. However wind speed simulated by three model were overestimated during both daytime and nighttime.