• Title/Summary/Keyword: Land surface temperature

Search Result 522, Processing Time 0.034 seconds

Abnormal air temperature prediction of South Korea using multiple linear regression model and Terra/Aqua MODIS LST (다중 선형회귀모형과 Terra/Aqua MODIS 지표면온도를 활용한 우리나라 이상기온 예측)

  • Chung, Jeehun;Lee, Yonggwan;Lee, Jiwan;Kim, Seongjoon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.139-139
    • /
    • 2019
  • 지구 온난화 및 기후변화로 인해 비롯된 전 지구적인 기온 상승은 가뭄, 폭염, 한파 등의 이상 기후 현상을 야기하여 인류의 생존을 위협하는 환경 문제로 대두되고 있다. 이와 같은 기후변화 및 이상기후 현상을 이해하고 파악하기 위해서는 정확하고 상세한 기온 정보가 필수적이다. 우리나라는 기상청에서 전국 590개소의 기상관측장비로 기온 정보를 생산하고 있지만 산림이 약 70%를 차지하는 복잡한 지형을 가지고 있어 지상관측밀도의 공간적 제약이 발생해 상세하고 균일한 기온 정보 생산에 제약이 있다. 이러한 단점을 극복하기 위해 본 연구에서는 위성으로 측정한 지표면 온도(Land Surface Temperature, LST) 자료와 다중선형회귀모형(Multiple Linear Regression Model)을 활용해 두 자료간의 상관관계를 파악하고 지상기온을 예측하고자 한다. 위성자료로 Terra 및 Aqua MODIS 위성의 1000m 공간해상도를 가진 일별 LST자료 MOD11A1, MYD11A1의 Daytime 자료를 각각 2000년부터 2018년까지 총 19년의 기간에 대해 구축하였으며, 전국 92개의 기상청 관측소로부터 최고, 최저 기온 자료를 동 기간에 대해 구축하였다. LST를 이용한 이상기온 예측 알고리즘은 python을 이용해 구현하였으며 예측 결과는 실제 기온 자료를 통해 검증하였다. 또한, 예측 기온 자료의 연대별, 순별(상, 중, 하순) 분석을 실시하고, 2018년 극한 폭염 및 한파(2017년 12월~2018년 2월)의 예측 가능성을 검토하여 연구 결과에 대한 다양한 활용방안을 제시하고자 한다.

  • PDF

A study on evapotranspiration using Terra MODIS images and soil water deficit index (Terra MODIS 위성영상과 토양수분 부족지수를 이용한 증발산량 산정 연구)

  • Jinuk Kim;Yonggwan Lee;Jeehun Chung;Jiwan Lee;Seongjoon Kim
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.119-119
    • /
    • 2023
  • 본 연구에서는 Terra MODIS(MODerate resolution Imaging Spectroradiometer) 위성영상과 토양수분 부족지수(Soil Water Deficit Index, SWDI)를 이용하여 2012년부터 2022년까지 한반도 전국의 1km 공간 증발산량을 산정하였다. 공간 증발산량을 산정하기 위한 과정은 크게 두 가지로 구분된다. 첫 번째로 MODIS의 LST(Land Surface Temperature), NDVI(Normalized Difference Vegetation Index), 선행강우 및 무강우 누적일수를 이용해 1 km 공간 토양수분을 산정하였다. 농촌진흥청 토양수분관측망 자료 중 토지피복, 토양 속성을 고려하여 선정된 70개소 토양수분 실측데이터와 비교한 결과 지점별 평균 R2 0.63~0.90으로 유의미한 상관성을 나타내었다. 산정된 공간 토양수분은 생장저해수분점과 초기위조점의 관계를 이용한 SWDI로 변환하였다. 두 번째로 순 복사량, 기온 및 NDVI의 적은 수문인자를 통해 증발산량 산정이 가능한 MS-PT(Modified Satellite-based Priestley-Taylor) 모형을 기반으로 계절별 식생과 토양수분 상태를 고려하여 1 km 공간 증발산량을 산정하였다. MS-PT 모형에서 가정한 대기 증발 변수 Diurnal temperature (DT)와 지표 수분의 상관성 문제를 해결하기 위해 DT를 SWDI로 적용하였다. 모형 결과의 검증을 위해 국내 플럭스 타워 (설마천, 청미천, 덕유산) 증발산량 관측자료와의 결정계수(Coefficient of determination, R2), RMSE(Root Mean Square Error) 및 IOA(Index of Agreement)를 산정하였다. 본 연구의 결과로 생산되는 국내 증발산량의 시, 공간적 변동성은 증발산량을 통한 수문학적 가뭄지수 및 급성 가뭄을 파악하는데 활용될 수 있을 것으로 판단된다.

  • PDF

The NCAM Land-Atmosphere Modeling Package (LAMP) Version 1: Implementation and Evaluation (국가농림기상센터 지면대기모델링패키지(NCAM-LAMP) 버전 1: 구축 및 평가)

  • Lee, Seung-Jae;Song, Jiae;Kim, Yu-Jung
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.18 no.4
    • /
    • pp.307-319
    • /
    • 2016
  • A Land-Atmosphere Modeling Package (LAMP) for supporting agricultural and forest management was developed at the National Center for AgroMeteorology (NCAM). The package is comprised of two components; one is the Weather Research and Forecasting modeling system (WRF) coupled with Noah-Multiparameterization options (Noah-MP) Land Surface Model (LSM) and the other is an offline one-dimensional LSM. The objective of this paper is to briefly describe the two components of the NCAM-LAMP and to evaluate their initial performance. The coupled WRF/Noah-MP system is configured with a parent domain over East Asia and three nested domains with a finest horizontal grid size of 810 m. The innermost domain covers two Gwangneung deciduous and coniferous KoFlux sites (GDK and GCK). The model is integrated for about 8 days with the initial and boundary conditions taken from the National Centers for Environmental Prediction (NCEP) Final Analysis (FNL) data. The verification variables are 2-m air temperature, 10-m wind, 2-m humidity, and surface precipitation for the WRF/Noah-MP coupled system. Skill scores are calculated for each domain and two dynamic vegetation options using the difference between the observed data from the Korea Meteorological Administration (KMA) and the simulated data from the WRF/Noah-MP coupled system. The accuracy of precipitation simulation is examined using a contingency table that is made up of the Probability of Detection (POD) and the Equitable Threat Score (ETS). The standalone LSM simulation is conducted for one year with the original settings and is compared with the KoFlux site observation for net radiation, sensible heat flux, latent heat flux, and soil moisture variables. According to results, the innermost domain (810 m resolution) among all domains showed the minimum root mean square error for 2-m air temperature, 10-m wind, and 2-m humidity. Turning on the dynamic vegetation had a tendency of reducing 10-m wind simulation errors in all domains. The first nested domain (7,290 m resolution) showed the highest precipitation score, but showed little advantage compared with using the dynamic vegetation. On the other hand, the offline one-dimensional Noah-MP LSM simulation captured the site observed pattern and magnitude of radiative fluxes and soil moisture, and it left room for further improvement through supplementing the model input of leaf area index and finding a proper combination of model physics.

Prediction of Nitrate Contamination of Groundwater in the Northern Nonsan area Using Multiple Regression Analysis (다중 회귀 분석을 이용한 논산 북부 지역 지하수의 질산성 질소 오염 예측)

  • Kim, Eun-Young;Koh, Dong-Chan;Ko, Kyung-Seok;Yeo, In-Wook
    • Journal of Soil and Groundwater Environment
    • /
    • v.13 no.5
    • /
    • pp.57-73
    • /
    • 2008
  • Nitrate concentrations were measured up to 49 mg/L (as $NO_3$-N) and 22% of the samples exceeded drinking water standard in shallow and bedrock groundwater of the northern Nonsan area. Nitrate concentrations showed a significant difference among land use groups. To predict nitrate concentration in groundwater, multiple regression analysis was carried out using hydrogeologic parameters of soil media, topography and land use which were categorized as several groups, well depth and altitude, and field parameters of temperature, pH, DO and EC. Hydrogeologic parameters were quantified as area proportions of each category within circular buffers centering at wells. Regression was performed to all the combination of variables and the most relevant model was selected based on adjusted coefficient of determination (Adj. $R^2$). Regression using hydrogelogic parameters with varying buffer radii show highest Adj. $R^2$ at 50m and 300m for shallow and bedrock groundwater, respectively. Shallow groundwater has higher Adj. $R^2$ than bedrock groundwater indicating higher susceptibility to hydrogeologic properties of surface environment near the well. Land use and soil media was major explanatory variables for shallow and bedrock groundwater, respectively and residential area was a major variable in both shallow and bedrock groundwater. Regression involving hydrogeologic parameters and field parameters showed that EC, paddy and pH were major variables in shallow groundwater whereas DO, EC and natural area were in bedrock groundwater. Field parameters have much higher explanatory power over the hydrogeologic parameters suggesting field parameters which are routinely measured can provide important information on each well in assessment of nitrate contamination. The most relevant buffer radii can be applied to estimation of travel time of contaminants in surface environment to wells.

Comparative Study of KOMPSAT-1 EOC Images and SSM/I NASA Team Sea Ice Concentration of the Arctic (북극의 KOMPSAT-1 EOC 영상과 SSM/I NASA Team 해빙 면적비의 비교 연구)

  • Han, Hyang-Sun;Lee, Hoon-Yol
    • Korean Journal of Remote Sensing
    • /
    • v.23 no.6
    • /
    • pp.507-520
    • /
    • 2007
  • Satellite passive microwave(PM) sensors have been observing polar sea ice concentration(SIC), ice temperature, and snow depth since 1970s. Among them SIC is playing an important role in the various studies as it is considered the first factor for the monitoring of global climate and environment changes. Verification and correction of PM SIC is essential for this purpose. In this study, we calculated SIC from KOMPSAT-1 EOC images obtained from Arctic sea ice edges from July to August 2005 and compared with SSM/I SIC calculated from NASA Team(NT) algorithm. When we have no consideration of sea ice types, EOC and SSM/I NT SIC showed low correlation coefficient of 0.574. This is because there are differences in spatial resolution and observing time between two sensors, and the temporal and spatial variation of sea ice was high in summer Arctic ice edge. For the verification of SSM/I NT SIC according to sea ice types, we divided sea ice into land-fast ice, pack ice, and drift ice from EOC images, and compared them with SSM/I NT SIC corresponding to each ice type. The concentration of land-fast ice between EOC and SSM/I SIC were calculated very similarly to each other with the mean difference of 0.38%. This is because the temporal and spatial variation of land-fast ice is small, and the snow condition on the ice surface is relatively dry. In case of pack ice, there were lots of ice ridge and new ice that are known to be underestimated by NT algorithm. SSM/I NT SIC were lower than EOC SIC by 19.63% in average. In drift ice, SSM/I NT SIC showed 20.17% higher than EOC SIC in average. The sea ice with high concentration could be included inside the wide IFOV of SSM/I because the drift ice was located near the edge of pack ice. It is also suggested that SSM/I NT SIC overestimated the drift ice covered by wet snow.

Characteristics of Surface Sedment and Seasonal Variation of Suspended Sediment in the Masan Bay, South Coast of Korea (한국 남해 마산만의 표층퇴적물 특성과 부유퇴적물의 계절별 변화 양상)

  • Choi, Jae Ung;Woo, Han Jun;Choi, Dong Lim;Lee, Tae Hee
    • Journal of Wetlands Research
    • /
    • v.8 no.3
    • /
    • pp.67-77
    • /
    • 2006
  • Sedimentological investigations on surface and suspended sediments were performed in Masan Bay of the South Sea in order to reveal recent changes in depositional environments concerning anthropogenic influence. Surface sediments had been classified as 3 sediment facies: mud, slightly gravelly mud, and gravelly mud. In general, mud facies with more than 60% of silt is predominant and slightly gravelly mud facies occurs at the watercourse of bay's central area. The silt-dominant mud faices appears to be predominant before and after dredging. Temperature and salinity changes during one tidal cycle for each season suggest that water columns were stratified without vertical mixing regardless of the season due to weak intensity of tide from the effect of geographical features. The effect of freshwater discharge from the land seems to be insignificant. The strongest current was observed during ebb tide in spring and autumn while observed during flood tide in summer and winter. Net sediment flux (fs) and net suspended sediment transport (Qs) for suspended sediment were determined by remaining drift developed here. Net suspended sediment transport loads were seaward with $62.02{\times}10^3kgm^{-1}$, $31.84{\times}10^3kgm^{-1}$ in spring and fall, respectively, and landward with $18.23{\times}10^3kgm^{-1}$, $3.22{\times}10^3kgm^{-1}$ in summer and winter, respectively.

  • PDF

Analysis of Urban Heat Island (UHI) Alleviating Effect of Urban Parks and Green Space in Seoul Using Deep Neural Network (DNN) Model (심층신경망 모형을 이용한 서울시 도시공원 및 녹지공간의 열섬저감효과 분석)

  • Kim, Byeong-chan;Kang, Jae-woo;Park, Chan;Kim, Hyun-jin
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.48 no.4
    • /
    • pp.19-28
    • /
    • 2020
  • The Urban Heat Island (UHI) Effect has intensified due to urbanization and heat management at the urban level is treated as an important issue. Green space improvement projects and environmental policies are being implemented as a way to alleviate Urban Heat Islands. Several studies have been conducted to analyze the correlation between urban green areas and heat with linear regression models. However, linear regression models have limitations explaining the correlation between heat and the multitude of variables as heat is a result of a combination of non-linear factors. This study evaluated the Heat Island alleviating effects in Seoul during the summer by using a deep neural network model methodology, which has strengths in areas where it is difficult to analyze data with existing statistical analysis methods due to variable factors and a large amount of data. Wide-area data was acquired using Landsat 8. Seoul was divided into a grid (30m × 30m) and the heat island reduction variables were enter in each grid space to create a data structure that is needed for the construction of a deep neural network using ArcGIS 10.7 and Python3.7 with Keras. This deep neural network was used to analyze the correlation between land surface temperature and the variables. We confirmed that the deep neural network model has high explanatory accuracy. It was found that the cooling effect by NDVI was the greatest, and cooling effects due to the park size and green space proximity were also shown. Previous studies showed that the cooling effects related to park size was 2℃-3℃, and the proximity effect was found to lower the temperature 0.3℃-2.3℃. There is a possibility of overestimation of the results of previous studies. The results of this study can provide objective information for the justification and more effective formation of new urban green areas to alleviate the Urban Heat Island phenomenon in the future.

Characterisitcs of Hail Occurred in the Korea Peninsular (우리 나라 우박 발생일의 특성)

  • Im, Eun-Ha;Jeong, Yeong-Seon;Nam, Jae-Cheol
    • Journal of Korea Water Resources Association
    • /
    • v.33 no.2
    • /
    • pp.229-235
    • /
    • 2000
  • Characteristics of hail occurred during 1989-1998 is studied. Hail is observed mainly at west coast, southwest inland, and Taegwallyong. Average diameter of hailstone is 0.6 cm, and 70% of the occurrence frequency of hail is observed at west coast. During winter and spring, the wet -bulb zero height (WBZ) is low enough to prevent the melting process of hail. But the lack of available low-level moisture (mean mixing ratio in lowest 100 hPa) makes the size of hail small. As a result, smaller size hail is observed frequently over west coast. On the contrary, WBZ is higher during summer, it means that hail is melted before it reaches ground, but the size of hail is bigger. Thus the larger hail is observed mainly Taegwallyong during summer. Hail is observed from 1100 LST to 1500 LST over west coast and around 1800 LST over Taegwallyong. It suggest that thermally driven mesoscale circulations such as land-sea breeze and mountain ridge-valley circulation aid in the formation of hail. Upper and surface air temperature is related to formation of hailstorm. Before formation of hailstorm in November 1998, the upper air temperature decreases. And hails is observed in the spot of strong temperature and dew point temperature gradient coincidently.

  • PDF

Estimation of Theoretical and Technical Potentials of Geothermal Power Generation using Enhanced Geothermal System (우리나라 EGS 지열발전의 이론적 및 기술적 잠재량 평가)

  • Song, Yoon-Ho;Baek, Seung-Gyun;Kim, Hyoung-Chan;Lee, Tae-Jong
    • Economic and Environmental Geology
    • /
    • v.44 no.6
    • /
    • pp.513-523
    • /
    • 2011
  • We estimated geothermal power generation potential in Korea through Enhanced Geothermal System (EGS) technology following the recently proposed protocol which was endorsed by international organizations. Input thermal and physical data for estimation are density, specific heat and thermal conductivity measurements from 1,516 outcrop samples, 180 heat production, 352 heat flow, and 52 mean surface temperature data. Inland area was digitized into 34,742 grids of $1'{\times}1'$ size and temperature distribution and available heat were calculated for 1 km depth interval from 3 km down to 10 km. Thus estimated theoretical potential reached 6,975 GW which is 92 times total generation capacity of Korea in 2010. Technical potential down to 6.5 km and considering land accessibility, thermal recovery ratio of 0.14 and temperature drawdown factor of $10^{\circ}C$ was 19.6 GW. If we disregard temperature drawdown factor, which can be considered in estimating economic potential, the technical potential increases up to 56 GW.

Development and Application of Slime Meter for Evaluation of Slime Thickness in Borehole (굴착공 내 슬라임 두께 평가를 위한 슬라임미터의 개발 및 적용)

  • Hong, Won-Taek;Woo, Gyuseong;Lee, Jong-Sub;Song, Myung Jun;Lim, Daesung;Park, Min-Chul
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.10
    • /
    • pp.29-38
    • /
    • 2018
  • The slime formed at the bottom of the borehole causes the excessive displacement and loss of the bearing capacity of the drilled shaft. In this study, the slime meter is developed for the evaluation of the slime based on the electrical properties of the fluid and the slime in the borehole. The slime meter is composed of a probe instrumented with electrodes and temperature sensor and a frame with rotary encoder, so that the slime meter profiles the electrical resistivity compensated with temperature effect along the depth. For the application of the slime meter, three field tests are conducted at a borehole with a diameter of 3 m and a depth of 46.9 m with different testing time and locations. For all the tests, the experimental results show that while electrical resistivities are constantly measured in the fluid, the electrical resistivities sharply increase at the surface of the slime. Therefore, the slime thicknesses are estimated by the differences in the depths of the slime surface and the ground excavation. The experimental results obtained at the same testing point with different testing time show that the estimated thickness of the slime increases by the elapsed time. Also, the estimated slime at the side of the borehole is thicker than that at the center of the borehole. As the slime meter estimates the slime in the borehole by measuring the electrical resistivity with simple equipment, the slime meter may be effectively used for the evaluation of the slime formed at the bottom of the borehole.