• Title/Summary/Keyword: Land leveling

Search Result 37, Processing Time 0.021 seconds

Geoid of Western Mongolia from airborne gravity data 2004

  • Forsberg, Rene;Olesen, A.;Dalkhaa, Munkhtsetseg;Begzsuren, Amarzaya
    • 한국지형공간정보학회:학술대회논문집
    • /
    • 2005.08a
    • /
    • pp.93-99
    • /
    • 2005
  • This paper summarizes a preliminary geoid computation for western Mongolia, utilizing the airborne data collected fall 2004, as part of the NGA-DNSC-ALAGaC-MonMap cooperative airborne gravity project. A gravimetric geoid has been computed using the airborne gravity data, SRTM terrain models and GRACE/EGM global fields. The gravimetric geoid has subsequently been fitted to GPS-leveling data across Western Mongolia, as well as for a special Ulaanbaatar city geoid model.

  • PDF

Transformation Model of Vertical Datum between Land and Ocean Height System using the Precise Spirit Leveling Results (정밀수준측량 성과를 이용한 육상 및 해상 수직기준면 변환모델링)

  • Lee, Dong-Ha;Yun, Hong-Sic;Hwang, Jin Sang;Suh, Yong-Cheol
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.4D
    • /
    • pp.407-419
    • /
    • 2012
  • It is difficult to obtain the accurate and homogeneous height information over the whole Korea due to the effect of different vertical datums have been divided into land and sea part. In this study, we tried to unify the different vertical datums using the precise spirit leveling between TBM (tidal bench mark) and BM (bench mark) in order to solve the problems caused by different vertical datums. For this, the vertical datum offsets at observed points which were calculate from leveling results and then transformation model of vertical datum will be modelled using calculated offsets along the coastal line. For suggesting the precise modelling method to vertical datum transformation, we analyzed results from various interpolation methods such as Spline and LSC method. As the results from analysis, the LSC method combined with 4-parameters trend model is more suitable for modelling the offsets between vertical datums. The final transformation model of vertical datum using the combination of LSC and 4-parameter model which provides the transformation accuracies of ${\pm}10.4cm{\sim}14.8cm$ level. And, the software for vertical datum transformation that was also developed using the final model in order to convert the height information included in various spatial data effectively. Therefore, the transformation model between vertical datums of land and sea part, which is developed in this study, is expected to minimize the confusion caused by mismatch of height information in the use of spatial data, and it also can be minimize economic and time losses in various application fields such as coastal development project, coastal disaster prevention, etc.

Investigation on Construction Process and Efficiency of Underwater Construction Equipment for Rubble Mound Leveling works (수중 고르기 장비의 건설 공정 및 효율성 분석)

  • Won, Deokhee;Jang, In-Sung;Shin, Changjoo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.5
    • /
    • pp.372-378
    • /
    • 2016
  • A mound was constructed to install a caisson and sofa blocks underwater. The mound riprap, which were of uniform grade, size, shape, and specific gravity, formed the foundation for the support superstructure. Also, rubble leveling works were performed before installing structures such as caissons. In this study, underwater construction equipment was developed with a remotely controlled operating system and underwater environment monitoring system for unmanned underwater rubble leveling work. The performance of the developed equipment was verified using on-land and underwater tests. In addition to the performance verification, the construction process and economic efficiency of the equipment should be checked before applying it to the real construction field for commercial purposes. In this paper, a construction process using the developed equipment was proposed and compared with the existing rubble leveling method. The results demonstrated that the new construction method has higher economic efficiency and safety than the existing construction method.

Development of Water Saving Irrigation Method Using Water Balance Model (물수지 모형을 이용한 절수관개기법 개발)

  • Sohn , Seung-Ho;Chung , Sang-Ok
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.46 no.5
    • /
    • pp.3-11
    • /
    • 2004
  • The objective of this study is to develop water saving irrigation method using water balance model in order to save rural water. Daily water balance components such as irrigation water, drainage water, effective rainfall, ET, and infiltration were measured in paddy fields. Model simulations were performed for different outlet heights and ponding depths. The outlet heights and the ponding depths are 2 cm, 4 cm, 6 cm, 8 cm, and 10 cm, respectively. Based on the simulation very shallow ponding depth of 2 cm with 10 cm outlet height showed the largest effective rainfall ratio and the smallest irrigation amount. Until the introduction of laser leveling dozer and automatic inlet control devices, it would be desirable to adopt 4cm ponding depth because of difficulty of land leveling and frequency of farmer's field visit. The results of this study will be applied in the paddy farming and can improve water use efficiency.

Conceptual Design of Bevel Gear-based Leveling Station for Take-off and Landing of Unmanned Aerial Vehicles (무인 항공기 이착륙을 위한 베벨 기어 기반 수평 유지 스테이션의 개념 설계)

  • Hahm, Jehun;Park, Sanghyun;Jeong, Myungsu;Kim, Sang Ho;Lee, Jaeyoul
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.4_2
    • /
    • pp.655-662
    • /
    • 2022
  • Recently, with the increase in the use of UAV(unmanned aerial vehicles), research on horizontal maintenance stations that can take off and land in various environments has been actively conducted. These stations can safely land UAV through multiple DOF(degrees of freedom) or at least 2-DOF-based actuator actuation. Among them, many researchers are dealing with the multi-DOF stewart platform due to its high safety. However, the stewart platform requires high-precision control technology because it requires a lot of torque to actuate according to the load action. Therefore, in this paper, to solve the mentioned problem, a bevel gear-based 2-DOF horizontal maintenance station system is proposed. The proposed system is configured to prevent damage due to air resistance when maintaining ships and to install it in a small space. Also, in terms of system configuration, the bevel gear-based horizontal maintenance system has the main advantage of being able to take off and land UAVs of various sizes through the replacement of station pads. The driving of the system consists of a simple form that can control the motor by adjusting the rotation speed of the motor according to the sea waveform.

Optimal Design of Contour-Lined Plots for Land Consolidation Planning in Sloping Areas (경사지 경지정리지구의 등고선 구획 최적설계)

  • 강민구;박승우;강문성;김상민
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.45 no.6
    • /
    • pp.83-95
    • /
    • 2003
  • In this study, a new concept in a paddy consolidation project is introduced in that curved parallel terracing with contour-lined layout is adopted in sloping areas instead of conventional rectangular terracing. The contoured layout reduces earth-moving considerably compared to rectangular methods in consolidation projects. The objective of the paper is to develop a combinatorial optimization model using the network theory for the design of contour-lined plots which minimizes the volume of earth moving. The results showed that as the length of short side of plot is longer or the land slope is steeper, the volume of earth moving for land leveling increases. The developed optimization model is applied for three consolidated districts and the resulting optimal earth moving is compared with the volume of earth from the conventional method. The shorter is the minimum length of short side of a polt with increases the number of plots, the less is the volume of earth. As the minimum length of short side is 20 m for efficient field works by farm machinery, the volume of earth moving of optimal plot is less by 21.0∼27.1 % than that of the conventional consolidated plots.

A Study on the Utilization of LNS's Navigation Data to Decide the Possibility of a Vehicle's Leveling (수평정치 가능여부 판단을 위한 LNS 항법정보 활용방안 연구)

  • Hwang, Chan-Oh;You, Chang-Seok;Park, Yun-Ho;Lee, Jeong-Hun
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.14 no.4
    • /
    • pp.548-555
    • /
    • 2011
  • This paper presents a new method of measuring the ground's gradient using LNS(land navigation system) navigation data. When a vehicle equipped with LNS arrives at any place, LNS provides its navigation data which contain the information on vehicle's motion. We developed some formulas which can explain correlation between the vehicle's motion and ground's gradient. The proposed method using those formulas is shown to be accurate and convenient.

A Study on Geoid Height of Provinces in South Korea by Terrain correction of Earth Gravitational Models (EGMs의 지형보정에 따른 국내 지역별 지오이드고 연구)

  • Lee, yong-chang
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2007.11a
    • /
    • pp.942-946
    • /
    • 2007
  • The new gravity field combination models are expected to improve the knowledge of the Earth's global gravity field. This study evaluates six global gravity field models derived from gravimetry and altimetry surface data in a comparison with ground truth in South Korea. For calculating a more accurate estimate of the geoid heights from the height anomalies, the terrain corrections due to the terrain masses over geoid have considered, the model for the topographic correction is a spherical harmonic expansion of the ETOPO2 DTM model. Geoid heights obtained from GPS and levelling in land area of South Korea are compared with those from the EGMs. The results show that EIGEN-CG03C EGM and EIGEN-GL04C EGM displayed the nearest results to GPS/leveling, and also confirmed the importance of terrain correction for geoid height in case of the uneven topography.

  • PDF