• Title/Summary/Keyword: Land covers

Search Result 138, Processing Time 0.025 seconds

Detection of Land Subsidence and its Relationship with Land Cover Types using ESA Sentinel Satellites data: A case study of Quetta valley, Pakistan

  • Ahmad, Waqas;Kim, Dongkyun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.148-148
    • /
    • 2018
  • Land subsidence caused by excessive groundwater pumping is a serious hydro-geological hazard. The spatial variability in land use, unbalanced groundwater extraction and aquifer characteristics are the key factors which make the problem more difficult to monitor using conventional methods. This study uses the European Space Agency (ESA) Sentinel satellites to investigate and monitor land subsidence varying with different land covers and groundwater use in the arid Quetta valley, Pakistan. The Persistent Scattering Differential Interferometry of Synthetic Aperture Radar (PS-DInSAR) method was used to develop 28 subsidence interferograms of the study area for the period between 16 Oct 2014 and 06 Oct 2016 using ESA's Sentinel-1 SAR data. The uncertainty of DInSAR result is first minimized by removing the dynamic effect caused by atmospheric factors and then filtered using the radar Amplitude Dispersion Index (ADI) to select only the stable pixels. Finally the subsidence maps were generated by spatially interpolating the land subsidence at the stable pixels, the comparison of DInSAR subsidence with GPS readings showed an R 2 of 0.94 and mean absolute error of $5.7{\pm}4.1mm$. The subsidence maps were also analysed for the effect of aquifer type and 4 land covers which were derived from Sentienl-2 multispectral images. The analysis show that during the two year period, the study area experienced highly non-linear land subsidence ranging from 10 to 280 mm. The subsidence at different land covers was significantly different from each other except between the urban and barren land. The barren land and seasonally cultivated area show minor to moderate subsidence while the orchard and urban area with high groundwater extraction rate showed excessive amount of land subsidence. Moreover, the land subsidence and groundwater drawdown was found to be linearly proportional to each other.

  • PDF

Propagation Analysis of DGPS Antenna for Radial Ground and Obstacle

  • Kim, Young-Wan
    • Journal of information and communication convergence engineering
    • /
    • v.9 no.4
    • /
    • pp.363-368
    • /
    • 2011
  • The DGPS transmits the enhancement signal to GPS using the medium frequency band. The NDGPS service that covers the Korean peninsula has been started since 2009. The service area of ocean-based DGPS(maritime-DGPS) reference stations covers the 100NM, but land-based DGPS(land-DGPS) covers 80km service area less than that of maritime DGPS. The DGPS's antenna has the top-loaded monopole antenna type. Top-loaded monopoles are the logical antennas to be used in order to get a low profile antenna and a performance according to the broadcaster and communication needs. The antenna needs to get the ground plane with good conductivity characteristics and flat ground plane without obstacle near to the transmitting antenna. In this paper, the radiation characteristics of an equivalent MF antenna are analyzed in view points of the ground conductivity and the ground plane with obstacle near to the antenna.

Comparative Analysis of the Multispectral Vegetation Indices and the Radar Vegetation Index

  • Kim, Yong-Hyun;Oh, Jae-Hong;Kim, Yong-Il
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.32 no.6
    • /
    • pp.607-615
    • /
    • 2014
  • RVI (Radar Vegetation Index) has shown some promise in the vegetation fields, but its relationship with MVI (Multispectral Vegetation Index) is not known in the context of various land covers. Presented herein is a comparative analysis of the MVI values derived from the LANDSAT-8 and RVI values originating from the RADARSAT-2 quad-polarimetric SAR (Synthetic Aperture Radar) data. Among the various multispectral vegetation indices, NDVI (Normalized Difference Vegetation Index) and SAVI (Soil Adjusted Vegetation Index) were used for comparison with RVI. Four land covers (urban, forest, water, and paddy field) were compared, and the patterns were investigated. The experiment results demonstrated that the RVI patterns of the four land covers are very similar to those of NDVI and SAVI. Thus, during bad weather conditions and at night, the RVI data could serve as an alternative to the MVI data in various application fields.

Landuse classifications from Thematic Mapper Images Using a Maximum Likelihood Method (위성영상을 이용한 토지이용분류에 관한 연구)

  • 박희성;박승우
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 1998.10a
    • /
    • pp.366-369
    • /
    • 1998
  • To get the knowledge of land uses for watersheds, Thematic Mapper image from Landsat 5 satellite was used. The image was classified into land covers/uses by maximum likelihood classification technique. Land uses from the satellite image in this study was compared with those from the topographical map in previous. It was found that Land uses from the satellite image had a good reflection of real situations and more advantage in the reduction of time and cost.

  • PDF

Assessment of Hydrological Impact by Tracing Long-term Land Cover Changes Using Landsat TM Imageries

  • Kim, Seong J.;Park, Geun A.
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.50-52
    • /
    • 2003
  • The purpose of this study is to evaluate the hydrological impact due to temporal land cover changes by gradual urbanization of a watershed. WMS HEC-1 was adopted, and DEM with 200m resolution and hydrologic soil group from 1:50,000 soil map were prepared. Land covers of 1986, 1990, 1994 and 1999 Landsat TM images were classified by maximum likelihood method. By applying the model, watershed average CN value was affected in the order of paddy, forest and urban/residential, respectively.

  • PDF

Estimation of runoff coefficient through impervious covers analysis using long-term outflow simulation (장기유출 모의를 통한 도시유역 불투수율에 따른 유출계수 변화)

  • Kim, Young-Ran;Hwang, Sung-Hwan
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.28 no.6
    • /
    • pp.635-645
    • /
    • 2014
  • The changes of rainfall pattern and impervious covers have increased disaster risks in urbanized areas. Impervious covers such as roads and building roofs have been dramatically increased. So, it is falling the ability safety of flood defense equipments to exist. Runoff coefficient means ratio of runoff by whole rainfall which is able to directly contribute at surface runoff during rainfall event. The application of accurate runoff coefficients is very important in sewer pipelines design. This study has been performed to estimate runoff characteristics change which are applicable to the process of sewer pipelines design or various public facilities design. It has used the SHER model, a long-term runoff model, to analyze the impact of a rising impervious covers on runoff coefficient change. It thus analyzed the long-term runoff to analyze rainfall basins extraction. Consequently, it was found that impervious surfaces could be a important factor for urban flood control. We could suggest the application of accurate runoff coefficients in accordance to the land Impervious covers. The average increase rates of runoff coefficients increased 0.011 for 1% increase of impervious covers. By having the application of the results, we could improve plans for facilities design.

The Effects of Flow and Land Use Types on Seasonal Variations of Water Quality in Streams (하천 수질의 계절적 변화에 미치는 유량과 토지이용의 영향)

  • Han, Mideok;Park, Shinjuong;Choi, Seungseok;Kim, Jongchan;Lee, Changhee;Namkung, Eun;Chung, Wookjin
    • Journal of Korean Society on Water Environment
    • /
    • v.25 no.4
    • /
    • pp.539-546
    • /
    • 2009
  • We examined the effects of land cover types on water quality based on data surveyed during April 2007-February 2008 from 178 sites of 111 streams in Paldang watershed. BOD, COD, DO, SS, T-N, and T-P concentrations of spring and summer were strongly and significantly associated with the first principal component of the proportions of eight land cover types, and differences between all parameter's concentration except SS and T-N of spring and summer were insignificantly related with them. SS and T-N concentration of summer were significantly correlated with increase and decrease of stream flow. T-P concentration of spring was the most significantly related with the second principal component which was positively correlated with the proportions of residential and forest land covers and was negatively correlated with the proportions of paddy and grass land covers. It is necessary to manage land use of the upper watershed and stream flow for improvement in water quality because seasonal variations of each water quality parameter are dependent upon land cover and flow variations.

Characteristics of Thermal Variations with the Different Land Covers in an Urban Area (도시 지역에서 토지 피복에 따른 열 변이 특성)

  • Park, Sung-Ae;Kong, Hak-Yang;Kim, Seung-Hyun;Park, Sungmin;Shin, Young-Kyu
    • Ecology and Resilient Infrastructure
    • /
    • v.3 no.1
    • /
    • pp.46-53
    • /
    • 2016
  • This study was conducted to analyze the effect of the different land covers of an urban park (Hyowon park) in downtown Suwon on the urban thermal variations during a hot summer. The effect of the air temperature reduction in the urban park was 4.4%-4.5% for the downtown residence (Maetan-dong). This value was about 0.8% lower than that of the outskirts residence (Sanggwanggyo-dong). The daily mean temperature, daily maximum temperature, summer day and heat wave frequency were measured under the different land covers (cement-block, grass, pine-grass, shading area and mixed forest) showed these values generally decreased under natural land cover types. Daily minimum temperature and tropical night frequency didn't seem to correlate with the land cover types. Means of thermal comfort indices (wet bulb globe temperature, heat index and discomfort index) in the shading area, mixed forest and the pine-grass types were lower than those of cement block and grass types. However the levels of those indices were equal to 'very high' or 'caution' levels in the afternoon (13:00-15:00). In the morning (06:00-08:00), thermal comfort indices of the urban park didn't correlate with land cover types. Therefore, to reduce heat stress and to improve the thermal comfort in urban parks, an increase in the area of natural land cover such as grass, forest and open spaces is required.

Application of Multi-periodic Harmonic Model for Classification of Multi-temporal Satellite Data: MODIS and GOCI Imagery

  • Jung, Myunghee;Lee, Sang-Hoon
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.4
    • /
    • pp.573-587
    • /
    • 2019
  • A multi-temporal approach using remotely sensed time series data obtained over multiple years is a very useful method for monitoring land covers and land-cover changes. While spectral-based methods at any particular time limits the application utility due to instability of the quality of data obtained at that time, the approach based on the temporal profile can produce more accurate results since data is analyzed from a long-term perspective rather than on one point in time. In this study, a multi-temporal approach applying a multi-periodic harmonic model is proposed for classification of remotely sensed data. A harmonic model characterizes the seasonal variation of a time series by four parameters: average level, frequency, phase, and amplitude. The availability of high-quality data is very important for multi-temporal analysis.An satellite image usually have many unobserved data and bad-quality data due to the influence of observation environment and sensing system, which impede the analysis and might possibly produce inaccurate results. Harmonic analysis is also very useful for real-time data reconstruction. Multi-periodic harmonic model is applied to the reconstructed data to classify land covers and monitor land-cover change by tracking the temporal profiles. The proposed method is tested with the MODIS and GOCI NDVI time series over the Korean Peninsula for 5 years from 2012 to 2016. The results show that the multi-periodic harmonic model has a great potential for classification of land-cover types and monitoring of land-cover changes through characterizing annual temporal dynamics.

Development of Ridge Regression Model of Pollutant Load Using Runoff Weighted Value Based on Distributed Curve-Number (분포형 CN 기반 토지피복별 유출가중치를 이용한 오염부하량 능형회귀모형 개발)

  • Song, Chul Min;Kim, Jin Soo
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.60 no.1
    • /
    • pp.111-120
    • /
    • 2018
  • The purpose of this study was to develop a ridge regression (RR) model to estimate BOD and TP load using runoff weighted value. The concept of runoff weighted value, based on distributed curve-number (CN), was introduced to reflect the impact of land covers on runoff. The estimated runoff depths by distributed CN were closer to the observed values than those by area weighted mean CN. The RR is a technique used when the data suffers from multicollinearity. The RR model was developed for five flow duration intervals with the independent variables of daily runoff discharge of seven land covers and dependent variables of daily pollutant load. The RR model was applied to Heuk river watershed, a subwatershed of the Han river watershed. The variance inflation factors of the RR model decreased to the value less than 10. The RR model showed a good performance with Nash-Sutcliffe efficiency (NSE) of 0.73 and 0.87, and Pearson correlation coefficient of 0.88 and 0.93 for BOD and TP, respectively. The results suggest that the methods used in the study can be applied to estimate pollutant load of different land cover watersheds using limited data.