• Title/Summary/Keyword: Land Use Climate Change

Search Result 282, Processing Time 0.023 seconds

Potential Impact of Climate Change on Distribution of Warm Temperate Evergreen Broad-leaved Trees in the Korean Peninsula (기후변화에 따른 한반도 난대성 상록활엽수 잠재서식지 분포 변화)

  • Park, Seon Uk;Koo, Kyung Ah;Kong, Woo-Seok
    • Journal of the Korean Geographical Society
    • /
    • v.51 no.2
    • /
    • pp.201-217
    • /
    • 2016
  • We accessed the climate change effects on the distributions of warm-evergreen broad-leaved trees (shorten to warm-evergreens below) in the Korean Peninsula (KP). For this, we first selected nine warm-evergreens with the northern distribution limits at mid-coastal areas of KP and climate variables, coldest month mean temperature and coldest quarter precipitation, known to be important for warm-evergreens growth and survival. Next, species distribution models (SDMs) were constructed with generalized additive model (GAM) algorithm for each warm-evergreen. SDMs projected the potential geographical distributions of warm evergreens under current and future climate conditions in associations with land uses. The nine species were categorized into three groups (mid-coastal, southwest-coastal, and southeast-inland) based on their current spatial patterns. The effects of climate change and land uses on the distributions depend on the current spatial patterns. As considering land uses, the potential current habitats of all warm-evergreens decrease over 60%, showing the highest reduction rate for the Kyungsang-inland group. SDMs forecasted the expansion of potential habitats for all warm-evergreens under climate changes projected for 2050 and 2070. However, the expansion patterns were different among three groups. The spatial patterns of projected coldest quarter precipitation in 2050 and 2070 could account for such differences.

  • PDF

Health Impacts of Climate Change and Natural Disaster (기후변화와 자연재난의 건강영향)

  • Kim, Daeseon;Lee, Chulwoo;Vatukela, Jese
    • Journal of Appropriate Technology
    • /
    • v.5 no.2
    • /
    • pp.118-125
    • /
    • 2019
  • Climate change is one part of 17 Sustainable Development Goals (SDGs). According to the Fifth Assessment Report by the Inter- governmental Panel on Climate Change(IPCC) published in 2014, global warming is caused by greenhouse gas (GHG) emissions. The most important GHG is carbon dioxide (CO2), which is released by the burning of fossil fuels and, to a lesser extent, by land use practices, followed by nitrous oxide and methane. IPCC predicts that global temperatures will rise 3.7℃ and sea level will rise 0.63 m by 2099 in the case of no strong restraint. According to the report, we can expect a massive species extinctions, changes in storm and drought cycles, altered ocean circulation, and redistribution of vegetation by global warming. However, climate changes, especially global warming, are the largest potential threat to human health and the source of a number of diseases globally. If climate changes are continued uncontrolled, human health will be adversely affected by the accelerating climate change and the natural disaster induced by climate change. It means we will face more serious conditions of injury, disease, and death related to natural disasters such as flood, drought, heat waves, malnutrition, more allergy, air pollution and climate change related infections related to morbidity and mortality. This review emphasizes on the relationship between global climate changes and human health and provides some suggestions for improvement.

Analysis of Land Use Pattern Change of Sub-Watershed -Focused on Moyar, India- (유역하류지역의 토지이용변화 분석 -인도 Moyar유역을 중심으로-)

  • Malini, Ponnusamy;Yeu, Yeon
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.18 no.2
    • /
    • pp.87-92
    • /
    • 2010
  • Large pressure on the growing population has increased rapid change in the LULC (land use/land cover) patterns in the watershed area. Spatial distribution of LULC information and its changes are desirable for any effective planning, managing and monitoring activities. The aim of the study is to produce the 1,50,000 scaled LULC change map for the sub-watershed, Western Moyar, India using the multi-temporal satellite image dataset of IRS LISS III images for the year 1989, 1999, and 2002. About 9 classes are extracted using onscreen visual interpretation techniques for all the three years. The change detection analysis was performed using matrix method for period I (1989-1999) and period II (1999-2002). The study reveals that the changes noticed in period II (1999-2002) is comparatively more than period I (1989-1999), which is dynamic information to protect the sub-watershed area from the deterioration and paves the way to for the sustainable development.

A Characteristics and Improvement of Thermal Environment in Summer of Protected Horticulture Complex Using CFD Simulation (CFD 시뮬레이션을 이용한 시설원예단지 여름철 외부 열환경 특성 및 개선방안)

  • Son, Jin-Kwan;Kong, Min-Jae;Choi, Deuggyu;Kang, Dong-Hyeon;Park, Min-Jung;Yun, Sung-Wook;Lee, Seungchul;Lee, Si-Young
    • Journal of Korean Society of Rural Planning
    • /
    • v.24 no.3
    • /
    • pp.73-86
    • /
    • 2018
  • Agricultural or rural landscape provides various ecosystem services. However, the ecosystem services function is declining due to various environmental problems such as climate change, land use change, stream intensification, non-point pollution and garbage. The A1B scenario predicts that the mean air temperature of South Korea will rise $3.8^{\circ}C$ degrees celsius in 2100. Agricultural sector is very vulnerable to climate change, so it must be thoroughly predicted and managed. In Korea, the facility horticulture complex is 54,051ha in 2016 and is the 3rd largest in the world(MAFRA, 2014). Facilities of horticultural complexes are reported to cause problems such as groundwater decrease, vegetation and insects diversity reduction, landscapes damage and garbage increase, compared with the existing land use paddy fields. Heat island phenomenon associated with climate change is also accelerated by the high heat absorption of horticultural sites. Therefore, we analyzed the heat island phenomenon occurring in the facility of horticultural complex in Korea. As an improvement measurement, I examined how much air temperature is reduced by putting the channel and the open space. In the case of the Buyeo area, the Computational Fluid Dynamics (CFD) simulation was analyzed for the average summer temperature distribution in the current land use mode at $38.9^{\circ}C$. As an improvement measurement, CFD simulation after 10% of 6m water channel was found to have an effect of lowering the summer temperature of about $2.7^{\circ}C$ compared with the present average of $36.2^{\circ}C$. In addition, CFD simulations after analyzing 10% of the open space were analyzed at $34.7^{\circ}C$, which is $4.2^{\circ}C$ lower than the present. For the Jinju area, CFD simulations were analyzed for the average temperature of summer at $37.8^{\circ}C$ in the present land use pattern. As an improvement measure, CFD simulations after 10% of 6m water channel were found to have an effect of lowering the summer temperature of about $2.6^{\circ}C$ compared to the current average of $35.2^{\circ}C$. In addition, CFD simulations after analyzing 10% of the open space were analyzed at $33.9^{\circ}C$, which is $3.9^{\circ}C$ lower than the present. It can be said that the effect of summer temperature drop in open space and waterway has been proven. The results of this study are expected to be reflected in sustainable agriculture land use and used as basic data for government - level policy in land use planning for climate change.

Long-term land cover change near Upo Swamp and the numerical experiment on its impact on the local climate (우포늪 부근의 장기적 토지피복도 변화와 그것이 국지기후에 미치는 영향에 관한 수치실험)

  • Hae-Dong Kim;Soon-Hwan Lee
    • Journal of Environmental Science International
    • /
    • v.33 no.3
    • /
    • pp.227-234
    • /
    • 2024
  • We investigated the change in land-use alteration in a 45 km × 45 km area around the Upo wetlands in 1920s(before the Japanese occupation period), 1950s(immediately Korean independence) and the period 1970s to 2000s. These data can guide in understanding surface environmental changes in the lower Nakdong River from the early 20th century to the present. The influence of the long-term decreasing trend of the wetland area at the Upo Swamp was evaluated using a high-resolution local circulation model. The cooling effect of the wetlands on surface air during the daytime in summer(e.g, early August) was approximately 2℃ greater in the 1920s than in the 2000s, which is attributed to wider water areas in the 1920s. Additionally, long-term changes in land use have caused changes in the convergence zone of local circulation wind.

Application and Development of Carbon Emissions Factors for Deciduous Species in Republic of Korea - Robinia pseudoacacia, Betula platyphylla, and Liriodendron tulipifera - (국내 활엽수종의 탄소배출계수 개발 및 적용 - 아까시나무, 자작나무, 백합나무를 대상으로 -)

  • Lee, Sun Jeoung;Yim, Jong Su;Kang, Jin Take;Kim, Raehyun;Son, Yowhan;Park, Gawn Su;Son, Yeong Mo
    • Journal of Climate Change Research
    • /
    • v.8 no.4
    • /
    • pp.393-399
    • /
    • 2017
  • According to the United Nations Framework Convention on Climate Change (UNFCCC), all parties have to submit the national GHG inventory report. Estimating carbon stocks and changes in Land Use, Land-Use Changes and Forestry (LULUCF) needs an activity data and emission factors. So this study was conducted to develop carbon emission factor for Robinia pseudoacacia L., Betula platyphylla var. japonica, and Liriodendron tulipifera. As a result, the basic wood density ($g/cm_3$) was 0.64 for R. pseudoacacia, 0.55 for B. platyphylla, and 0.46 for L. tulipifera. Biomass expansion factor was 1.47 for R. pseudoacacia, 1.30 for B. platyphylla, and 1.24 for L. tulipifera. Root to shoot ratio was 0.48 for R. pseudoacacia, 0.29 for B. platyphylla, and 0.23 for L. tulipifera. Uncertainty of estimated emission factors on three species ranged from 3.39% to 27.43% within recommended value (30%) by IPCC. We calculated carbon stock and change using these emission factors. Three species stored carbon in forest and net $CO_2$ removal was $1,255,398\;t\;CO_2/yr$ during 5 years. So we concluded that our result could be used as emission factors for national GHG inventory report on forest sector.

Improving Assessment of External Environment for Green Standard for Energy & Environmental Design Certification according to Climate Change (기후변화에 따른 녹색건축인증제도의 외부환경 평가항목 개선방향 연구)

  • Kim, Ji-Hyeon;Kwon, Hyuck-Sam;Kim, Jung-Gon;Song, Ok-Hee
    • Land and Housing Review
    • /
    • v.8 no.3
    • /
    • pp.171-180
    • /
    • 2017
  • In 1990s, as the extreme weather events according to the global warming climate change are occurred frequently all around the world and the scale of the damage increases, the developed countries are promoting various policies for reducing greenhouse gas emissions setting the goal of greenhouse gas reduction with the level of State and local government. Especially for the greenhouse gas reduction of buildings and the inducement of eco-friendly design, the green certification system is strengthened with the assessment of energy and greenhouse management, and recently, according to the policy change of climate and energy, the certification system expanded from the buildings to the level of city and district is piloted. So this research is to understand the main contents and the assessment system of domestic green building certification system implemented in March 2013 in response to the policy change of climate and energy and to suggest the basic data for the improvement of present domestic greenhouse certification standard through the analysis of actual certification and the main case analysis of international green certification system. Recently in developed countries, in 1990s, for the reduction of building's greenhouse gas emission and the inducement of eco-friendly design, from the building of LEED, BREEAM, DGNB to the level of city and district such as LEED Neighborhood Development, BREEAM Communities, DGNB Stadtquartiere, the system is expanded and piloted. On the contrary, as for the domestic standard of green building certification system, the distribution ratio according to the assessment items in each category consists of the assessment system based on the buildings, and just the simple adjustment of some items and the improvement of weighted value are performed. Actually, as a result of selecting the 30 districts of apartment housing with the most certification performance by use among the 49 buildings certified by Institute of Land & Housing from December 2014 to July 2016 and analyzing the assessment score, the certification level is determined by the sectors of high distribution like indoor environment and energy not by the ineffective sector of external environment with low distribution so this system has a limitation to perform the practical means for the policy change of climate and energy. Thus for the national green building certification standards, the assessment system in the sector of external environment is to complemented and furthermore, reflecting domestic reality, through the introduction of certification system and the assessment system with the level of city and district, this system should be improved to meet the international certification standard.

Impacts of Urban Land Cover Change on Land Surface Temperature Distribution in Ho Chi Minh City, Vietnam

  • Le, Thi Thu Ha;Nguyen, Van Trung;Pham, Thi Lan;Tong, Thi Huyen Ai;La, Phu Hien
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.39 no.2
    • /
    • pp.113-122
    • /
    • 2021
  • Urban expansion, particularly converting sub-urban areas to residential and commercial land use in metropolitan areas, has been considered as a significant signal of regional economic development. However, this results in urban climate change. One of the key impacts of rapid urbanization on the environment is the effect of UHI (Urban Heat Island). Understanding the effects of urban land cover change on UHI is crucial for improving the ecology and sustainability of cities. This research reports an application of remote sensing data, GIS (Geographic Information Systems) for assessing effects of urban land cover change on the LST (Land Surface Temperature) and heat budget components in Ho Chi Minh City, where is one of the fastest urbanizing region of Vietnam. The change of urban land cover component and LST in the city was derived by using multi-temporal Landsat data for the period of 1998 - 2020. The analysis showed that, from 1998 to 2020 the city had been drastically urbanized into multiple directions, with the urban areas increasing from approximately 125.281 km2 in 1998 to 162.6 km2 in 2007, and 267.2 km2 in 2020, respectively. The results of retrieved LST revealed the radiant temperature for 1998 ranging from 20.2℃ to 31.2℃, while that for 2020 remarkably higher ranging from 22.1℃ to 42.3℃. The results also revealed that given the same percentage of urban land cover components, vegetation area is more effective to reduce the value of LST, meanwhile the impervious surface is the most effective factor to increase the value of the LST.

GIS-based Estimation of Climate-induced Soil Erosion in Imha Basin (기후변화에 따른 임하댐 유역의 GIS 기반 토양침식 추정)

  • Lee, Khil Ha;Lee, Geun Sang;Cho, Hong Yeon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.3D
    • /
    • pp.423-429
    • /
    • 2008
  • The object of the present study is to estimate the potential effects of climate change and land use on soil erosion in the mid-east Korea. Simulated precipitation by CCCma climate model during 2030-2050 is used to model predicted soil erosion, and results are compared to observation. Simulation results allow relative comparison of the impact of climate change on soil erosion between current and predicted future condition. Expected land use changes driven by socio-economic change and plant growth driven by the increase of temperature and are taken into accounts in a comprehensive way. Mean precipitation increases by 17.7% (24.5%) for A2 (B2) during 2030-2050 compared to the observation period (1966-1998). In general predicted soil erosion for the B2 scenario is larger than that for the A2 scenario. Predicted soil erosion increases by 48%~90% under climate change except the scenario 1 and 2. Predicted soil erosion under the influence of temperature-induced fast plant growth, higher evapotranspiration rate, and fertilization effect (scenario 5 and 6) is approximately 25% less than that in the scenario 3 and 4. On the basis of the results it is said that precipitation and the corresponding soil erosion is likely to increase in the future and care needs to be taken in the study area.

Assessment of future hydrological behavior of Soyanggang Dam watershed using SWAT (SWAT 모형을 이용한 소양강댐 유역의 미래 수자원 영향 평가)

  • Park, Min Ji;Shin, Hyung Jin;Park, Geun Ae;Kim, Seong Joon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.4B
    • /
    • pp.337-346
    • /
    • 2010
  • Climate change has a huge impact on various parts of the world. This study quantified and analyzed the effects on hydrological behavior caused by climate, vegetation canopy and land use change of Soyanggang dam watershed (2,694.4 $km^2$) using the semi-distributed model SWAT (Soil Water Assessment Tool). For the 1997-2006 daily dam inflow data, the model was calibrated with the Nash-Sutcliffe model efficiencies between the range of 0.45 and 0.91. For the future climate change projection, three GCMs of MIROC3.2hires, ECHAM5-OM, and HadCM3 were used. The A2, A1B and B1 emission scenarios of IPCC (Intergovernmental Panel on Climate Change) were adopted. The data was corrected for each bias and downscaled by Change Factor (CF) method using 30 years (1977-2006, baseline period) weather data and 20C3M (20th Century Climate Coupled Model). Three periods of data; 2010-2039 (2020s), 2040-2069 (2050s), 2070-2099 (2080s) were prepared for future evaluation. The future annual temperature and precipitation were predicted to change from +2.0 to $+6.3^{\circ}C$ and from -20.4 to 32.3% respectively. Seasonal temperature change increased in all scenarios except for winter period of HadCM3. The precipitation of winter and spring increased while it decreased for summer and fall for all GCMs. Future land use and vegetation canopy condition were predicted by CA-Markov technique and MODIS LAI versus temperature regression respectively. The future hydrological evaluation showed that the annual evapotranspiration increases up to 30.1%, and the groundwater recharge and soil moisture decreases up to 55.4% and 32.4% respectively compared to 2000 condition. Dam inflow was predicted to change from -38.6 to 29.5%. For all scenarios, the fall dam inflow, soil moisture and groundwater recharge were predicted to decrease. The seasonal vapotranspiration was predicted to increase up to 64.2% for all seasons except for HadCM3 winter.