• Title/Summary/Keyword: Land Use Climate Change

Search Result 282, Processing Time 0.031 seconds

Comparative Analysis of the Effects of Heat Island Reduction Techniques in Urban Heatwave Areas Using Drones (드론을 활용한 도시폭염지역의 열섬 저감기법 효과 비교 분석)

  • Cho, Young-Il;Yoon, Donghyeon;Shin, Jiyoung;Lee, Moung-Jin
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.6_3
    • /
    • pp.1985-1999
    • /
    • 2021
  • The purpose of this study is to apply urban heat island reduction techniques(green roof, cool roof, and cool pavements using heat insulation paint or blocks) recommended by the Environmental Protection Agency (EPA) to our study area and determine their actual effects through a comparative analysis between land cover objects. To this end, the area of Mugye-ri, Jangyu-myeon, Gimhae, Gyeongsangnam-do was selected as a study area, and measurements were taken using a drone DJI Matrice 300 RTK, which was equipped with a thermal infrared sensor FLIR Vue Pro R and a visible spectrum sensor H20T 1/2.3" CMOS, 12 MP. A total of nine heat maps, land cover objects (711) as a control group, and heat island reduction technique-applied land covering objects (180) were extracted every 1 hour and 30 minutes from 7:15 am to 7:15 pm on July 27. After calculating the effect values for each of the 180 objects extracted, the effects of each technique were integrated. Through the analysis based on daytime hours, the effect of reducing heat islands was found to be 4.71℃ for cool roof; 3.40℃ for green roof; and 0.43℃ and -0.85℃ for cool pavements using heat insulation paint and blocks, respectively. Comparing the effect by time period, it was found that the heat island reduction effect of the techniques was highest at 13:00, which is near the culmination hour, on the imaging date. Between 13:00 and 14:30, the efficiency of temperature reduction changed, with -8.19℃ for cool roof, -5.56℃ for green roof, and -1.78℃ and -1.57℃ for cool pavements using heat insulation paint and blocks, respectively. This study was a case study that verified the effects of urban heat island reduction techniques through the use of high-resolution images taken with drones. In the future, it is considered that it will be possible to present case studies that directly utilize micro-satellites with high-precision spatial resolution.

Application of Simple Biosphere Model (SiB2) to Ecological Research (Simple Biosphere Model 2 (SiB2)의 생태학적 응용)

  • 김원식;조재일
    • The Korean Journal of Ecology
    • /
    • v.27 no.4
    • /
    • pp.245-256
    • /
    • 2004
  • The simple biosphere model 2 (SiB2), which is one of the land surface models, simulates the exchange of momentum, energy and mass such as water vapor and carbon dioxide between atmosphere and biosphere, and includes the biochemical sub-model for representation of stomatal conductance and photosynthetical activities. Throughout the SiB2 simulation, the significant information not only to understand of water and carbon budget but also to make an analysis of interaction such as feed-back and-forward between environment and vegetation is given. Using revised SiB2-Paddy, one sample study which is the evaluation of the runoff in Chaophraya river basin according to land use/cover change is presented in this review. Hence, SiB2 is available in order to ecological studied, if revised SiB2 for realistic simulation about soil respiration, computing leaf area index, vegetation competition and soil moisture is improved.

Analysis of CO2 Distribution Properties Using GOSAT : a Case Study of North-East Asia (GOSAT을 활용한 이산화탄소 분포 특성 분석 : 동북아시아를 사례로)

  • Choi, Jin Ho;Um, Jung Sup
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.21 no.2
    • /
    • pp.85-92
    • /
    • 2013
  • This study determined the spatial distribution characteristics of carbon dioxide in Northeast Asia, connecting land coverage and vegetation index that have influence on concentration and distribution of carbon dioxide measured by GOSAT with GIS spatial analysis method. The results visibly showed that the spatial distribution of carbon dioxide had different patterns in dependent on the present status of land use in its surrounding area. Such high concentration of carbon dioxide was formed in developed sites like cities while forest areas showed low concentration of it. We also found that there were relatively high negative(-) correlations between carbon dioxide and vegetation, in statistically significant level. It is expected to be used as a basic data for establishing measures to reduce greenhouse gas in the future.

Carbon Uptake and Emissions in Urban Landscape, and the Role of Urban Greenspace for several Cities in Kangwon Province (강원도 일부도시의 경관내 탄소흡수 및 배출과 도시녹지의 역할)

  • 조현길
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.27 no.1
    • /
    • pp.39-53
    • /
    • 1999
  • This study quantified carbon uptake and emissions in urban landscape, and the role of urban greenspace in atmospheric carbon reduction for several cities of Chuncheon and Kangleung in Kangwon province. Mean carbon storage by trees and shrubs was 26.0 t (mertric tons)/ha in Chuncheon and 46.7 t/ha in Kangleung for natural lands, and ranged from 4.7 to 6.3 t/ha for urban lands (all land use types except natural and agricultural lands) in both cities. Mean annual carbon uptake by trees and shrubs ranged from 1.60 to 1.71 t/ha/yr for natural lands, and from 0.56 to 0.71 t/ha/yr for urban lands. There was no significant difference (95% confidence level) between the two cities in the carbon storage and annual carbon uptake per ha, except the carbon storage for natural lands. Organic carbon storage in soils (to a depth of 60 cm) of Chuncheon average 24.8 t/ha for urban lands and 31.6 t/ha for natural lands, 1.3 times greater than for urban lands. Annual carbon accumulation in soils was 1.3 t/hr/yr for natural lands of the study cities. Annual per capita carbon emissions from fossil fuel consumption were 1.3 t/yr in Chunceon and 1.8 t/yr in Kangleung. The principal carbon release in urban landscapes was from transport and industry. Total carbon storage by urban greenspace (trees, shrubs, and soils) equaled 66% of total carbon emissions in Chuncheon and 101% in Kangleung. Carbon uptake by urban greenspace annually offset total carbon emissions by approximately 4% in the study cities. Thus, urban greenspace played a partial important role in reducing atmospheric $CO_2$ concentrations. To increase $CO_2$ uptake and storage by urban greenspace, suggested are conservation of natural lands, minimization of hard surfaces and more plantings, selection of tree species with high growth rate, and proper management for longer healthy tree growth.

  • PDF

A Review of the Application of Constructed Wetlands as Stormwater Treatment Systems

  • Reyes, Nash Jett;Geronimo, Franz Kevin;Guerra, Heidi;Jeon, Minsu;Kim, Lee-Hyung
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.162-162
    • /
    • 2022
  • Stormwater management is an essential component of land-use planning and development. Due to the additional challenges posed by climate change and urbanization, various stormwater management schemes have been developed to limit flood damages and ease water quality concerns. Nature-based solutions (NBS) are increasingly used as cost-effective measures to manage stormwater runoff from various land uses. Specifically, constructed wetlands were already considered as socially acceptable green stormwater infrastructures that are widely used in different countries. There is a large collection of published literature regarding the effectiveness or efficiency of constructed wetlands in treating stormwater runoff; however, metadata analyses using bibliographic information are very limited or seldomly explored. This study was conducted to determine the trends of publication regarding stormwater treatment wetlands using a bibliometric analysis approach. Moreover, the research productivity of various countries, authors, and institutions were also identified in the study. The Web of Science (WoS) database was utilized to retrieve bibliographic information. The keywords ("constructed wetland*" OR "treatment wetland*" OR "engineered wetland*" OR "artificial wetland*") AND ("stormwater*" or "storm water*") were used to retrieve pertinent information on stormwater treatment wetlands-related publication from 1990 up to 2021. The network map of keyword co-occurrence map was generated through the VOSviewer software and the contingency matrices were obtained using the Cortext platform (www.cortext.net). The results obtained from this inquiry revealed the areas of research that have been adequately explored by past studies. Furthermore, the extensive collection of published scientific literature enabled the identification of existing knowledge gaps in the field of stormwater treatment wetlands.

  • PDF

A Study on the Influence of Urban Environment on the Generation of Thermal Diseases (도시 환경이 온열질환 발생에 미치는 영향에 관한 연구)

  • Lee, Su-Mi;Kweon, Ihl;Kim, Yong-Jin
    • The Journal of the Korea Contents Association
    • /
    • v.19 no.12
    • /
    • pp.84-92
    • /
    • 2019
  • The deterioration of the urban heat environment due to climate change and the occurrence of heat-related diseases have emerged as one of the major social problems. This has led to more research on climate change, including heat waves, but it is mainly focused on climate factors. However, the urban heat island phenomenon accelerates the summer heat wave, and the increasing trend of heat-related patients in urban areas suggests the impact of the city's environment. Thus, this study analyzed the effects of physical and social characteristics of urban areas on heat-related patients in Seoul and Gyeonggi-do. The analysis showed that the ratio of the total area of residential, commercial and industrial facilities, the main source of heat energy locality, among the land use statuses, was not statistically significant, but the road area and the green area were found to have a positive and negative The population density and the percentage of people aged 65 or older, the percentage of people living alone and the proportion of people receiving basic living were all shown to be significant, with only the ratio of elderly living alone and the ratio of population density having negative effects. The results of the study can be used to develop urban policy alternatives related to local warming patients.

Growth and Water Use Efficiency of Major Tree Species for Rehabilitation and the Impacts of Planting Trees on Microclimate Condition in Central Dry Zone of Myanmar (미얀마 건조지에서 주요 조림 수종의 생장과 수분이용효율 특성 및 조림이 건조지의 미세기상변화에 미치는 영향)

  • Park, Go Eun;Kim, Chan Beom;An, Jiae;Thang, Tluang Hmung;Maung, Wai Phyoe;Wai, Khaing Hsu;Kwon, Jino;Park, Chanwoo
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.18 no.4
    • /
    • pp.327-336
    • /
    • 2016
  • The Bagan, the central part of Myanmar, is dry zone where the mean annual precipitation is less than 600 mm for the last ten years. Forest in this region has been degraded due to biotic and abiotic disturbances. While there have been various efforts to rehabilitate the degraded area, the information on growth and physiological characteristics of planting species and the impacts of planting trees in the region still lacks. Therefore, this study was conducted to determine the growth and physiological water use efficiency characteristics of five species (Azadirachta indica A. Juss., Acacia catechu Willd., Eucalyptus camaldulensis Dehn., Acacia leucophloea (Roxb.) Willd. and Albizia lebbek (L.) Willd.) which are utilized as rehabilitation species in the dry zone and to identify the impacts of tree planting on microclimate change in dry zone. The growth and the foliar carbon isotope composition of seedlings and the above mentioned five species planted in 2005 were measured. And from February 2015 to January 2016, microclimatic factors air temperature and relative humidity at 60 cm and 2 m above soil, soil temperature, soil water contents and precipitation were measured at every 30-minute interval from the two weather stations installed in the plantation located in Ngalinpoke Mt. Range. One was established in the center of A. indica plantation, and the other was in the barren land fully exposed to the sunlight. Among the five species, A. indica and A. lebbek which showed higher water use efficiency could be recommended as rehabilitation species in dry zone. Planting trees in the dry area was shown to affect the change of microclimate with shading effects, declining temperature of the land surface and aridity of the air, and to contribute to conserving more water in soil by preventing direct evaporation and containing more water with fine roots of trees.

A Comparative Analysis of TOD Planning Elements of Major Urban Railway Station Areas in Seoul (환승역세권 평가를 통한 TOD 계획 요소의 비교분석)

  • Lee, Jun-Beom;Jin, Won-Young;Seo, Eun-Young;Won, Jai-Mu
    • Journal of the Korean Society for Railway
    • /
    • v.17 no.3
    • /
    • pp.201-209
    • /
    • 2014
  • Transit Oriented Development(TOD) has been the dominant paradigm for urban development. The traditional approach to the development of urban rail station areas demonstrates apparent weaknesses when it comes to compact and mixed-use types of development for these stations. Thus, the objective of this study is to derive evaluation indicators with which to assess urban rail station areas using TOD planning elements. A focus group interview was conducted to explore TOD planning elements. In order to examine the level of TOD to be achieved, an AHP technique was utilized to analyze the importance of several variables. Z-scores and Re-scores were applied to derive the values for the stations. The Variables related to the land use type, mixed use, floor area, and public transit were found to be the major contributing factors to the achievement of TOD in urban rail station areas. The results of this study show that the level of TOD achievement varies according to the major land use, density, accessibility, and mixed-use planning elements.

Current Status of Sericulture and Insect Industry to Respond to Human Survival Crisis (인류의 생존 위기 대응을 위한 양잠과 곤충 산업의 현황)

  • A-Young, Kim;Kee-Young, Kim;Hee Jung, Choi;Hyun Woo, Park;Young Ho, Koh
    • Korean journal of applied entomology
    • /
    • v.61 no.4
    • /
    • pp.605-614
    • /
    • 2022
  • Two major problems currently threaten human survival on Earth: climate change and the rapid aging of the population in developed countries. Climate change is a result of the increase in greenhouse gas (GHG) concentrations in the atmosphere due to the increase in the use of fossil fuels owing to economic and transportation development. The rapid increase in the age of the population is a result of the rise in life expectancy due to the development of biomedical science and technology and the improvement of personal hygiene in developed countries. To avoid irreversible global climate change, it is necessary to quickly transition from the current fossil fuel-based economy to a zero-carbon renewable energy-based economy that does not emit GHGs. To achieve this goal, the dairy and livestock industry, which generates the most GHGs in the agricultural sector, must transition to using low-carbon emission production methods while simultaneously increasing consumers' preference for low-carbon diets. Although 77% of currently available arable land globally is used to produce livestock feed, only 37% and 18% of the proteins and calories that humans consume come from dairy and livestock farming and industry. Therefore, using edible insects as a protein source represents a good alternative, as it generates less GHG and reduces water consumption and breeding space while ensuring a higher feed conversion rate than that of livestock. Additionally, utilizing the functionality of medicinal insects, such as silkworms, which have been proven to have certain health enhancement effects, it is possible to develop functional foods that can prevent or delay the onset of currently incurable degenerative diseases that occur more frequently in the elderly. Insects are among the first animals to have appeared on Earth, and regardless of whether humans survive, they will continue to adapt, evolve, and thrive. Therefore, the use of various edible and medicinal insects, including silkworms, in industry will provide an important foundation for human survival and prosperity on Earth in the near future by resolving the current two major problems.

Reviews in Medical Geography: Spatial Epidemiology of Vector-Borne Diseases (벡터매개 질병(vector-borne diseases) 공간역학을 중심으로 한 보건지리학의 최근 연구)

  • Park, Sunyurp;Han, Daikwon
    • Journal of the Korean Geographical Society
    • /
    • v.47 no.5
    • /
    • pp.677-699
    • /
    • 2012
  • Climate changes may cause substantial changes in spatial patterns and distribution of vector-borne diseases (VBD's), which will result in a significant threat to humans and emerge as an important public health problem that the international society needs to solve. As global warming becomes widespread and the Korean peninsula characterizes subtropical climate, the potentials of climate-driven disease outbreaks and spread rapidly increase with changes in land use, population distributions, and ecological environments. Vector-borne diseases are typically infected by insects such as mosquitoes and ticks, and infected hosts and vectors increased dramatically as the habitat ranges of the VBD agents have been expanded for the past 20 years. Medical geography integrates and processes a wide range of public health data and indicators at both local and regional levels, and ultimately helps researchers identify spatiotemporal mechanism of the diseases determining interactions and relationships between spatial and non-spatial data. Spatial epidemiology is a new and emerging area of medical geography integrating geospatial sciences, environmental sciences, and epidemiology to further uncover human health-environment relationships. An introduction of GIS-based disease monitoring system to the public health surveillance system is among the important future research agenda that medical geography can significantly contribute to. Particularly, real-time monitoring methods, early-warning systems, and spatial forecasting of VBD factors will be key research fields to understand the dynamics of VBD's.

  • PDF