• 제목/요약/키워드: Lamination Structure

검색결과 93건 처리시간 0.032초

Binder Film을 이용한 LTCC Sheet 적층 (Lamination of LTCC Sheet Using Binder Film)

  • 신효순;최용석;박은태
    • 한국세라믹학회지
    • /
    • 제43권4호
    • /
    • pp.253-258
    • /
    • 2006
  • In the lamination process of multi-layer ceramic modules, the occurrence of delamination comes into repeatedly. To completely improve the lamination process of LTCC sheets, a binder film was introduced between the layers. The binder film did not originate the delamination until the thickness under $40{\mu}m$. After lamination, the thickness of the binder film was determined by the infilteraion of binder by the pressure, and after the bake-out, was dependent on the decomposition of binder resin. Any detectable defect was not observed in the multilayer structure with Ag inner electrodes.

최종강도 경험식을 이용한 복합재 원통구조의 최적적층 설계 (Optimal Lamination Design of Composite Cylinders using an Empirical Ultimate Pressure Load Formula)

  • 조윤식;백점기
    • 대한조선학회논문집
    • /
    • 제56권4호
    • /
    • pp.316-326
    • /
    • 2019
  • In this paper, a methodology is presented for determining the optimal lamination of composite cylindrical structures subject to hydrostatic pressure. The strength criterion in association with the process of optimal design is the buckling collapse of composite cylinders under hydrostatic pressure loads. An empirical formula expressed in the form of the Merchant-Rankine equation is used to calculate the ultimate strength of filament-wound composite cylinders where genetic algorithm is applied for determining the optimized stacking sequences. It is shown that the optimized lamination provides improved collapse pressure loads. It is concluded that the developed method would be useful for the optimal lamination design of composite cylindrical structures.

복합재 이탈피의 3차원 구조해석 (A 3-D Structural Analysis of Composite Sabot)

  • 이성호;이강우;박관진;송흥섭
    • 한국군사과학기술학회지
    • /
    • 제6권2호
    • /
    • pp.65-72
    • /
    • 2003
  • Composite sabot can increase the penetration performance of APFSDS projectile by reduction of the sabot weight. However, it has a thick-sectioned lamination and the lamination structure is different from those of the conventional composite parts. In this study, modeling technique for a thick and radially-laminated composite part has been applied in the finite element analysis of composite sabot. Four models of composite lamination for the sabot have been proposed and evaluated for their structural strength.

환경하중하의 풍력발전 시스템 구조물의 수치 해석적 기법 연구 (Study on Numerical-analysis Technique for Windpower System Structure under Environmental Loadings)

  • 정해영;홍철현
    • 한국해양공학회지
    • /
    • 제25권5호
    • /
    • pp.69-75
    • /
    • 2011
  • The purpose of this study was to develop a buckling analysis technique for a windpower system structure under environmental loadings (hydrostatic pressure) using FEM. We analyzed an isotropic material and composite material and made a comparison using buckling pressure formulas. First, finite element analyses for an isotropic material (SC410) were performed to obtain the variation of buckling pressure for the number of elements and boundary conditions in a pressure-shell model, and the numerical results were compared with those of existing empirical formulas. Then, additional finite element analyses based on the results of the isotropic material (SC410) were performed to determine the optimum lamination angle and pattern for a composite material (URN300). The results of the FE analyses for the composite material were also compared with those of existing empirical formulas. The ply orientations (lamination angles) used in the FE analyses were $0^{\circ}$, $15^{\circ}$, $30^{\circ}$, $45^{\circ}$, $60^{\circ}$, $75^{\circ}$, and. The lamination patterns in the FE analyses were and. The lamination pattern was assumed to be the equivalent model of. The results of the FE analyses for the isotropic material (SC410) indicated that the optimal values for the number of elements and the boundary conditions were 6000 and both simply supported, respectively. The results of the FE analyses for the composite material (URN300) showed that the optimal ply orientation was $60^{\circ}{\sim}75^{\circ}$.

Collaborative optimization for ring-stiffened composite pressure hull of underwater vehicle based on lamination parameters

  • Li, Bin;Pang, Yong-jie;Cheng, Yan-xue;Zhu, Xiao-meng
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제9권4호
    • /
    • pp.373-381
    • /
    • 2017
  • A Collaborative Optimization (CO) methodology for ring-stiffened composite material pressure hull of underwater vehicle is proposed. Structural stability and material strength are both examined. Lamination parameters of laminated plates are introduced to improve the optimization efficiency. Approximation models are established based on the Ellipsoidal Basis Function (EBF) neural network to replace the finite element analysis in layout optimizers. On the basis of a two-level optimization, the simultaneous structure material collaborative optimization for the pressure vessel is implemented. The optimal configuration of metal liner and frames and composite material is obtained with the comprehensive consideration of structure and material performances. The weight of the composite pressure hull decreases by 30.3% after optimization and the validation is carried out. Collaborative optimization based on the lamination parameters can optimize the composite pressure hull effectively, as well as provide a solution for low efficiency and non-convergence of direct optimization with design variables.

하이브리드 적층복합재료에서의 Iso-Strain 구조설계의 최적화 (Optimum Design for Iso-strain Structure of Hybrid Laminated Composite)

  • 강선교;이경우;강태진
    • Composites Research
    • /
    • 제13권3호
    • /
    • pp.21-29
    • /
    • 2000
  • The optimum design of hybrid laminated composites for iso-strain structure has been studied by controling fiber orientations and thicknesses of each layer. Fiber orientations and thicknesses of each layer for iso-strain structure were designed. Combining the laminates of each layer of different reinforcing material, the constitutions of hybrid laminated composite for iso-strain structure were obtained. All these calculations were formed on computer systems, automatically for the hybridization. Using the data of some specific laminated composite such as glass and aramid reinforced composites, the constitutions of hybrid laminated composites for iso-strains structure were designed and verified by lamination theory. The strains of each layer of hybrid laminated composites are calculated and they turned out to be good agreements with the results obtained lamination theory.

  • PDF

Processing of Functionally Graded Materials via Green Tape Lamination

  • Cho, Yu-Jeong;Kim, Yong-Seog
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2003년도 international symposium on advanced powder metallurgy
    • /
    • pp.78-79
    • /
    • 2003
  • A functionally graded material was produced by laminating green tapes. The lamination resulted in the formation of functionally graded structure and sintering of the materials resulted of FGM. This results demonstrated a possibility of using green tapes in the processing of functionally graded materials.

  • PDF

다층 압전 필름의 전극 패턴 최적화를 통한 2차원 구조물에서의 모달 변환기 구현 (Design of Modal Transducer in 2D Structure Using Multi-Layered PVDF Films Based on Electrode Pattern Optimization)

  • 유정규;김지철;김승조
    • 소음진동
    • /
    • 제8권4호
    • /
    • pp.632-642
    • /
    • 1998
  • A method based on finite element discretization is developed for optimizing the polarization profile of PVDF film to create the modal transducer for specific modes. Using this concept, one can design the modal transducer in two-dimensional structure having arbitrary geometry and boundary conditions. As a practical means for implementing this polarization profile without repoling the PVDF film the polarization profile is approximated by optimizing electrode patterns, lamination angles, and poling directions of the multi-layered PVDF transducer. This corresponds to the approximation of a continuous function using discrete values. The electrode pattern of each PVDF layer is optimized by deciding the electrode of each finite element to be used or not. Genetic algorithm, suitable for discrete problems, is used as an optimization scheme. For the optimization of each layers lamination angle, the continuous lamination angle is encoded into discrete value using binary 5 bit string. For the experimental demonstration, a modal sensor for first and second modes of cantilevered composite plate is designed using two layers of PVDF films. The actuator is designed based on the criterion of minimizing the system energy in the control modes under a given initial condition. Experimental results show that the signals from residual modes are successfully reduced using the optimized multi-layered PVDF sensor. Using discrete LQG control law, the modal peaks of first and second modes are reduced in the amount of 12 dB and 4 dB, resepctively.

  • PDF

Hybrid Coextrusion and Lamination Process for Macrochanneled Bioceramic Scaffolds

  • Koh, Young-Hag;Bae, Chang-Jun;Kim, Hyoun-Ee
    • 한국세라믹학회지
    • /
    • 제41권7호
    • /
    • pp.497-502
    • /
    • 2004
  • A hybrid coextrusion and lamination process has been developed to fabricate macrochanneled bioceramic scaffolds. This process was mainly composed of three steps (i.e., coextrusion of thermoplastic compound, lamination, and thermal treatment), forming unique pore channels in dense bioceramic body. Pore channels were formed by removing carbon black material, while calcium phosphate or Tetragonal Zirconia Polycrystals (TZP) with a calcium phosphate coating layer were used as dense body. Two kinds of pore structures were fabricated; that is, the pore channels were formed in uni- or three-directional array. Such macrochanneled bioceramic scaffolds exhibited the precisely controlled pore structure (pore size, porosity, and interconnection), offering excellent mechanical properties and cellular responses.

Curved laminate analysis

  • Chiang., Yih-Cherng
    • Structural Engineering and Mechanics
    • /
    • 제39권2호
    • /
    • pp.169-186
    • /
    • 2011
  • This paper is devoted to the development of the equations which describe the elastic response of a curved laminate subjected to in-plane loads and bending moments. Similar to the classic $6{\times}6$ ABD matrix constitutive relation of a flat laminate, a new $6{\times}6$ matrix constitutive relation between force resultants, moment resultants, mid-plane strains and deformed curvatures for a curved laminate is formulated. This curved lamination theory will provide the fundamental basis for the analyses of curved laminated structures. The stress predictions by the present curved lamination theory are compared to those by the curved laminate analysis that neglected the nonlinear terms in the derivation of the constitutive relation. The results show that the curved laminate analysis that neglected the nonlinear terms cannot reflect the effect of curvature and can no longer predict the stresses accurately as the curvature becomes noticeable. In this paper, a curved lamination theory that retains the nonlinear terms and, therefore, accounts for the effect of the non-flat geometry of the structure will be developed.