• Title/Summary/Keyword: Laminates

Search Result 874, Processing Time 0.035 seconds

Characteristics of Charge Formation in the EPDM/XLPE Laminate (EPDM/XLPE Laminate의 전하형성 특성)

  • 박성국;남진호;서광석;이철호
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1996.11a
    • /
    • pp.287-290
    • /
    • 1996
  • The behaviour of interfacial charge in EPDM/XLPE laminates has been investigated by measuring charge distributions using a pulsed electroacoustic (PEA) method. Homocharge develops in EPDM while heterocharge develops in XLPE. A broadly interfacial charge peak is observed at EPDM/XLPE interface. When EPDM /XLPE laminates are treated in high temperature for different times, the amount and polarity of interfacial charge are changed.

  • PDF

The Static Strength Analysis and Experiment of Composite Laminate (복합재료 적층판의 정 강도 해석 및 실험)

  • 김인권;공창덕;방조혁
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2001.04a
    • /
    • pp.104-107
    • /
    • 2001
  • The purpose of this work is to investigate the static strength, the stress distribution, and the failure process of quasi-isotropic composite laminates made of two different matrices when loading directions are changed. We carried out static tests of $[0/-60/+60]_s$ and $[+30/-30/90]_s$ laminates. Two types of matrices used are AS4/epoxy and AS4/PEEK. The damage mechanisms of the quasi-isotropic laminate, $[0/-60/+60]_s$, strongly depend on the load direction applied to the laminate.

  • PDF

A study on the Impact damages and residual strength of CFRP laminates to impact under high temperature (고온에서 총격을 받는 CFRP 적층재의 총격손상과 잔류강도에 관한 연구)

  • 정종안;이상호;양인영
    • Journal of the Korean Society of Safety
    • /
    • v.11 no.3
    • /
    • pp.44-52
    • /
    • 1996
  • An experimental study on the effects of temperature change on the impact damages of CFRP aminates was made through an observation of the interrelations between the Impact energy vs. delamination area, the impact energy vs. residual bending strength, and the delamination area vs. the decreasing of the residual bending strength for CF/EPOXY and CF/PEEK composite laminates subjected to FOD (Foreign Object Damage) under high temperatures.

  • PDF

Study on Design and Performance of Microwave Absorbers of Carbon Nanotube Composite Laminates (탄소나노튜브 복합재 적층판을 활용한 전파흡수체의 설계 및 성능에 대한 연구)

  • Kim, Jin-Bong;Kim, Chun-Gon
    • Composites Research
    • /
    • v.24 no.2
    • /
    • pp.38-45
    • /
    • 2011
  • In this paper, we present an optimization method for the single Dallenbach-layer type microwave absorbers composed of E-glass fabric/epoxy composite laminates. The composite prepreg containing carbon nanotubes (CNT) was used to control the electrical property of the composites laminates. The design technology using the genetic algorithm was used to get the optimal thicknesses of the laminates and the filler contents at various center frequencies, for which the numerical model of the complex permittivity of the composite laminate was incorporated. In the optimal design results, the content of CNT increased in proportion to the center frequency, but, on the contrary, the thickness of the microwave absorbers decreased. The permittivity and reflection loss are measured using vector network analyzer and 7 mm coaxial airline. The influence of the mismatches in between measurement and prediction of the thickness and the complex permittivity caused the shift of the center frequency, blunting of the peak at the center frequency and the reduction of the absorbing bandwidth.

Acoustic Emission Characteristics during fracture Process of Glass Fiber/Aluminum Hybrid Laminates (유리섬유/알루미늄 혼합 적층판의 파괴과정과 음향방출 특성)

  • Woo, Sung-Choong;Choi, Nak-Sam
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.25 no.4
    • /
    • pp.274-286
    • /
    • 2005
  • Fracture behaviors and acoustic emission (AE) characteristics of single-edge-notched monolithic aluminum plates and glass fiber/aluminum hybrid laminate plates have been investigated under tensile loads. AE signals from monolithic aluminum could be classified into two different types: signals with low frequency band and high frequency band. High frequency signals were detected in the post stage of loading beyond displacement of 0.45mm. For glass fiber/aluminum laminates, AE signals with high amplitude and long duration were additionally confirmed on FFT frequency analysis, which corresponded to macro-crack propagation and/or delamination between A1 and fiber layers. On the basis of the above AE analysis and fracture observation with optical microscopy and ultrasonic T scan, characteristic features of AE associated with fracture processes of single-edge-notched glass fiber/aluminum laminates were elucidated according to different fiber ply orientations.

Characteristics of Rustling Sound of Laminated Fabric Utilizing Nano-web (나노웹을 이용한 라미네이트소재의 마찰음 특성)

  • Jeong, Tae-Young;Lee, Eu-Gene;Lee, Seung-Sin;Cho, Gil-Soo
    • Fashion & Textile Research Journal
    • /
    • v.15 no.4
    • /
    • pp.620-629
    • /
    • 2013
  • This study examines the rustling sound characteristics of electrospun nanofiber web laminates according to layer structures. This study assesses mechanical properties and frictional sounds (such as SPL); in addition, Zwicker's psychoacoustic parameters (such as Loudness (Z), Sharpness (Z), Roughness (Z), and Fluctuation strength (Z)) were calculated using the Sound Quality Program (ver.3.2, B&K, Denmark). The result determined how to control these characteristics and minimize rustling sounds. A total of 3 specimens' frictional sound (generated at 0.63 m/s) was recorded using a Simulator for Frictional Sound of Fabrics (Korea Patent No. 10-2008-0105524) and SPLs were analyzed with a Fast Fourier Transformation (FFT). The mechanical properties of fabrics were measured with a KES-FB system. The SPL value of the sound spectrum showed 6.84~58.47dB at 0~17,500Hz. The SPL value was 61.2dB for the 2-layer PU nanofiber web laminates layered on densely woven PET(C1) and was the highest at 65.1dB for the 3-layer PU nanofiber web laminates (C3). Based on SPSS 18.0, it was shown that there is a correlation between mechanical properties and psychoacoustic characteristics. Tensile properties (LT), weight (T), and bending properties (2HB) showed a high correlation with psychoacoustic characteristics. Tensile linearity (LT) with Loudness (Z) showed a negative correlation coefficient; however, weight (T) with Sharpness (Z) and Roughness (Z), and bending hysteresis (2HB) with Roughness (Z) indicated positive correlation coefficients, respectively.

Development of the Delamination Evaluation Parameters (I) -The Delamination Aspect Ratio and the Delamination Shape Factors-

  • Song, Sam-Hong;Oh, Dong-Joon
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.11
    • /
    • pp.1932-1940
    • /
    • 2004
  • Although the previous researches evaluated the fatigue behavior of Al/GFRP laminates using the traditional fracture mechanism, their researches were not sufficient to do it : the damage zone of Al/GFRP laminates was occurred at the delamination zone instead of the crack-metallic damages. Thus, previous researches were not applicable to the fatigue behavior of Al/GFRP laminates. The major purpose of this study was to evaluate delamination behavior using the relationship between crack length (a) and delamination width (b) in Al/GFRP laminate. The details of investigation were as follows: 1) Relationship between the crack length (a) and the delamination width (b), 2) Relationship between the delamination aspect ratio (b/a) and the delamination area rate ((A$\_$D/)/subN// (A$\_$D/)$\_$All/), 3) The effect of delamination aspect ratio (b/a) on the delamination shape factor (f$\_$s/) and the delamination growth rate (dA$\_$D// da). As results, it was known that the delamination aspect ratio (b/a) was decreased and the delamination area rate ((A$\_$D/)$\_$N// (A$\_$D/)$\_$All/) was increased as the normalized crack size (a/W) was increased. And, the delamination shape factors (f$\_$s/) of the ellipse-II(f$\_$s3/) was greater than of the ellipse-I(f$\_$s2/) but that of the triangle (f$\_$s1/) was less than of the ellipse-I(f$\_$s2/).

One-Sided Nondestructive Evaluation of CFRP Composites By Using Ultrasonic Sound (초음파를 이용한 CFRP 복합재의 일방향 비파괴 평가)

  • Im, Kwang-Hee;Zhang, Gui-Lin;Choi, Sung-Rok;Ye, Chang-Hee;Ryu, Je-Sung;Lim, Soo-Hwan;Han, Min-Gui;Hsu, David K.
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.1
    • /
    • pp.47-52
    • /
    • 2011
  • It is well known that stiffness of composites depends on layup sequence of CFRP(carbon fiber reinforced plastics) laminates because the layup of composite laminates influences their properties. Ultrasonic NDE of composite laminates is often based on the backwall echoes of the sample. A pair of such transducers was mounted in a holder in a nose-to-nose fashion to be used as a scanning probe on composites. Miniature potted angle beam transducers were used (Rayleigh waves in steel) on solid laminates of composites. Experiments were performed to understand the behavior of the transducers and the nature of the waves generated in the composite (mode, wave speed, angle of refraction). C-scan images of flaws and impact damage were then produced by combining the pitch-catch probe with a portable manual scanner known as the Generic Scanner ("GenScan"). The pitch-catch signal was found to be more sensitive than normal incidence backwall echo of longitudinal wave to fiber orientation of the CFRP composites, including low level porosity, ply waviness, and cracks. Therefore, it is found that the experimentally Rayleigh wave variation of pitch-catch ultrasonic signal was consistent with numerical results and one-side ultrasonic measurement might be very useful to detect the defects.

Analysis of Thermo-Acoustic Emission from Damage in Composite Laminates under Thermal Cyclic Loading (열하중을 받는 복합재료 적층판의 손상에 대한 열-음향방출해석)

  • Kim, Young-Bok;Min, Dae-Hong;Lee, Deok-Bo;Choi, Nak-Sam
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.21 no.3
    • /
    • pp.261-268
    • /
    • 2001
  • An investigation on nondestructive evaluation of thermal stress-nduced damage in the composite laminates (3mm in thickness and $[+45_6/-45_6]_s$ lay-up angles) has been performed using the thermo-acoustic emission technique. Reduction of thermo-AE events due to repetitive thermal load cycles showed a Kaiser effect. An analysis of the thermo-AE behavior determined the stress free temperature of composite laminates. Fiber fracture and matrix cracks were observed using the optical microscopy, scanning electron microscopy and ultrasonic C-sean. Short-Time Fourier Transform of thermo-AE signals offered the time-frequency characteristics which might classily the thermo-AE as three different types to estimate the damage processes of the composites.

  • PDF

The Analysis of Fatigue Behavior Using the Delamination Growth Rate(dAD/da) and Fiber Bridging Effect Factor(FBE) in Al/GERP Laminates (층간분리성장률(dAD/da)과 섬유가교효과인자(FBE)를 이용한 Al/GFRP 적층재의 피로거동 해석)

  • Song, Sam-Hong;Kim, Cheol-Woong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.2
    • /
    • pp.317-326
    • /
    • 2003
  • The influence of cyclic bending moment on the delamination and the fatigue crack propagation behavior in Al/GFRP laminate such as the wing section was investigated. The main objective of this study was to evaluate the relationship between crack profile and delamination behavior. And a propose parameter on the delamination growth rate(d $A_{D}$/da) of Al/GFRP laminates with a saw-cut using relationship between delamination area( $A_{D}$) and cycles(N), crack length(a), stress intensity factor range($\Delta$K). Also, the fiber bridging effect factor( $F_{BE}$ ) was propose that the fiber bridging modification factor($\beta$$_{fb}$ ) to evaluate using the delamination growth rate(d $A_{D}$/da). The shape and size of the delamination zone formed along the fatigue crack between aluminum alloy sheet. Class fiber-adhesive layer were measured by an ultrasonic C-scan image. The shape of delamination zone turns out to be semi-elliptic with the contour decreased non-linearly toward the crack tip. It represents that relationship between crack length and delamination growth rate(d $A_{D}$/da) were interdependent by reciprocal action, therefore it's applicable present a model for the delamination growth rate(dA/sib D//da) in Al/GFRP laminates.minates.s.