• Title/Summary/Keyword: Laminated Composite Structures

Search Result 389, Processing Time 0.023 seconds

A hybrid DQ-TLBO technique for maximizing first frequency of laminated composite skew plates

  • Vosoughi, Ali R.;Malekzadeh, Parviz;Topal, Umut;Dede, Tayfun
    • Steel and Composite Structures
    • /
    • v.28 no.4
    • /
    • pp.509-516
    • /
    • 2018
  • The differential quadrature (DQ) and teaching-learning based optimization (TLBO) methods are coupled to introduce a hybrid numerical method for maximizing fundamental natural frequency of laminated composite skew plates. The fiber(s) orientations are selected as design variable(s). The first-order shear deformation theory (FSDT) is used to obtain the governing equations of the plate. The equations of motion and the related boundary conditions are discretized in space domain by employing the DQ method. The discretized equations are transferred from the time domain into the frequency domain to obtain the fundamental natural frequency. Then, the DQ solution is coupled with the TLBO method to find the maximum frequency of the plate and its related optimum stacking sequences of the laminate. Convergence and applicability of the proposed method are shown and the optimum fundamental frequency parameter of the plates with different skew angle, boundary conditions, number of layers and aspect ratio are obtained. The obtained results can be used as a benchmark for further studies.

A Finite Element Analysis based on Higher-Order Zig-Zag Shell Theory for Laminated Composites Cylinderical Shell with Multiple Delaminations (다중 층간분리부가 있는 복합재 원통쉘의 지그재그 고차이론에 기초한 유한요소 진동해석)

  • Cho Maenghyo;Oh Jinho;Kim Heung-Soo
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.10a
    • /
    • pp.69-72
    • /
    • 2004
  • A new three-node triangular shell element based on higher order zig-zag theory is developed for laminated composite shells with multiple delaminations. The present higher order zig-zag shell theory is described in a general curvilinear coordinate system and in general tensor notation. All the complicated curvatures of surface including twisting curvatures can be described in an exact manner in the present shell element because this element is based on geometrically exact surface representation. The displacement field of the proposed finite element includes slope of deflection, which requires continuity between element interfaces. Thus the nonconforming shape function of Specht's three-node triangular plate bending element is employed to interpolate out-of-plane displacement. The present element passes the bending and twisting patch tests in flat surface configurations. The developed element is evaluated through the eigenvalue problems of composite cylindrical shells with multiple delaminations. Through the numerical examples it is demonstrated that the proposed shell element is efficient because it has minimal degrees of freedom per node. The present shell element should serve as a powerful tool in the prediction of natural frequency and modes of multi-layered thick laminated shell structures with arbitrary-shaped multiple delaminations.

  • PDF

An efficient procedure for lightweight optimal design of composite laminated beams

  • Ho-Huu, V.;Vo-Duy, T.;Duong-Gia, D.;Nguyen-Thoi, T.
    • Steel and Composite Structures
    • /
    • v.27 no.3
    • /
    • pp.297-310
    • /
    • 2018
  • A simple and efficient numerical optimization approach for the lightweight optimal design of composite laminated beams is presented in this paper. The proposed procedure is a combination between the finite element method (FEM) and a global optimization algorithm developed recently, namely Jaya. In the present procedure, the advantages of FEM and Jaya are exploited, where FEM is used to analyze the behavior of beam, and Jaya is modified and applied to solve formed optimization problems. In the optimization problems, the objective aims to minimize the overall weight of beam; and fiber volume fractions, thicknesses and fiber orientation angles of layers are selected as design variables. The constraints include the restriction on the first fundamental frequency and the boundaries of design variables. Several numerical examples with different design scenarios are executed. The influence of the design variable types and the boundary conditions of beam on the optimal results is investigated. Moreover, the performance of Jaya is compared with that of the well-known methods, viz. differential evolution (DE), genetic algorithm (GA), and particle swarm optimization (PSO). The obtained results reveal that the proposed approach is efficient and provides better solutions than those acquired by the compared methods.

On the modeling of dynamic behavior of composite plates using a simple nth-HSDT

  • Djedid, I. Klouche;Draiche, Kada;Guenaneche, B.;Bousahla, Abdelmoumen Anis;Tounsi, Abdelouahed;Bedia, E.A. Adda
    • Wind and Structures
    • /
    • v.29 no.6
    • /
    • pp.371-387
    • /
    • 2019
  • In the present paper, a simple refined nth-higher-order shear deformation theory is applied for the free vibration analysis of laminated composite plates. The proposed displacement field is based on a novel kinematic in which include the undetermined integral terms and contains only four unknowns, as against five or more in case of other higher-order theories. The present theory accounts for adequate distribution of the transverse shear strains through the plate thickness and satisfies the shear stress-free boundary conditions on the top and bottom surfaces of the plate, therefore, it does not require problem dependent shear correction factor. The governing equations of motion are derived from Hamilton's principle and solved via Navier-type to obtain closed form solutions. The numerical results of non-dimensional natural frequencies obtained by using the present theory are presented and compared with those of other theories available in the literature to verify the validity of present solutions. It can be concluded that the present refined theory is accurate and efficient in predicting the natural frequencies of isotropic, orthotropic and laminated composite plates.

Nonlinear Random Vibration of Laminated Composite Plates by Comparison of Classical Theory, 1st and 3rd Order Shear Theories (복합적층판의 비선형 불규칙 진동 해석에 관한 고전 이론, 1차 및 3차 전단 이론의 비교 연구)

  • Kang, Joowon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.13 no.1
    • /
    • pp.129-138
    • /
    • 2000
  • Composites are finding increasing use in a wide variety of engineering applications due to their outstanding mechanical properties. A number of studies have focused on the development of new materials as well as the response of composite structures to static and dynamic loads by assuming the external driving forces to be deterministic. However, there ate many situations in practice where the exciting forces vary randomly. In this work, the nonlinear response of laminated composite plates excited by stochastic loading is studied by the finite element method. Classical, first-order and third-order shear theories for plates are used in the finite element formulation. Since most composites exhibit significant nonlinearity in the shear stress-strain law, this is included in the present analysis.

  • PDF

On the fabrication of carbon fabric reinforced epoxy composite shell without joints and wrinkling

  • Vasanthanathan, A.;Nagaraj, P.;Muruganantham, B.
    • Steel and Composite Structures
    • /
    • v.15 no.3
    • /
    • pp.267-279
    • /
    • 2013
  • This article describes a simple and cost effective fabrication procedure by using hand lay-up technique that is employed for the manufacturing of thin-walled axi-symmetric composite shell structures with carbon, glass and hybrid woven fabric composite materials. The hand lay-up technique is very commonly used in aerospace and marine industries for making the complicated shell structures. A generic fabrication procedure is presented in this paper aimed at manufacture of plain Carbon Fabric Reinforced Plastic (CFRP) and Glass Fabric Reinforced Plastic (GFRP) shells using hand lay-up process. This paper delivers a technical breakthrough in fabrication of composite shell structures without any joints and wrinkling. The manufacture of stiffened CFRP shells, laminated CFRP shells and hybrid (carbon/glass/epoxy) composite shells which are valued by the aerospace industry for their high strength-to-weight ratio under axial loading have also been addressed in this paper. A fabrication process document which describes the major processing steps of the composite shell manufacturing process has been presented in this paper. A study of microstructure of the glass fabric/epoxy composite, carbon fabric/epoxy composite and hybrid carbon/glass/fabric epoxy composites using Scanning Electron Microscope (SEM) has been also carried out in this paper.

Ant colony optimization for dynamic stability of laminated composite plates

  • Shafei, Erfan;Shirzad, Akbar
    • Steel and Composite Structures
    • /
    • v.25 no.1
    • /
    • pp.105-116
    • /
    • 2017
  • This paper presents the dynamic stability study of laminated composite plates with different force combinations and aspect ratios. Optimum non-diverging stacking is obtained for certain loading combination and aspect ratio. In addition, the stability force is maximized for a definite operating frequency. A dynamic version of the principle of virtual work for laminated composites is used to obtain force-frequency relation. Since dynamic stiffness governs the divergence or flutter, an efficient optimization method is necessary for the response functional and the relevant constraints. In this way, a model based on the ant colony optimization (ACO) algorithm is proposed to search for the proper stacking. The ACO algorithm is used since it treats with large number of dynamic stability parameters. Governing equations are formulated using classic laminate theory (CLT) and von-Karman plate technique. Load-frequency relations are explicitly obtained for fundamental and secondary flutter modes of simply supported composite plate with arbitrary aspect ratio, stacking and boundary load, which are used in optimization process. Obtained results are compared with the finite element method results for validity and accuracy convince. Results revealed that the optimum stacking with stable dynamic response and maximum critical load is in angle-ply mode with almost near-unidirectional fiber orientations for fundamental flutter mode. In addition, short plates behave better than long plates in combined axial-shear load case regarding stable oscillation. The interaction of uniaxial and shear forces intensifies the instability in long plates than short ones which needs low-angle layup orientations to provide required dynamic stiffness. However, a combination of angle-ply and cross-ply stacking with a near-square aspect ratio is appropriate for the composite plate regarding secondary flutter mode.

An investigation on the vibrations of laminated shells under aeroacoustic loads using a WFE approach

  • Errico, Fabrizio;Franco, F.;Ichchou, M.;De Rosa, S.;Petrone, G.
    • Advances in aircraft and spacecraft science
    • /
    • v.6 no.6
    • /
    • pp.463-478
    • /
    • 2019
  • The present work investigates the effect on the flow-induced vibrations of the lay-up sequence of composite laminated axisymmetric structures, using an hybrid approach based on a wave finite element and a transfer matrix method. The structural vibrations, under deterministic distributed pressure loads, diffuse acoustic field and turbulent boundary layer excitations, are analysed and compared. A multi-scale approach is used for the dynamic analysis of finite structures, using an elementary periodic subsystem. Different flow regimes and shell curvatures are analysed and the computational efficiency is also discussed.

A computational investigation on flexural response of laminated composite plates using a simple quasi-3D HSDT

  • Draiche, Kada;Selim, Mahmoud M.;Bousahla, Abdelmoumen Anis;Tounsi, Abdelouahed;Bourada, Fouad;Tounsi, Abdeldjebbar;Mahmoud, S.R.
    • Steel and Composite Structures
    • /
    • v.41 no.5
    • /
    • pp.697-711
    • /
    • 2021
  • In this work, a simple quasi 3-D parabolic shear deformation theory is developed to examine the bending response of antisymmetric cross-ply laminated composite plates under different types of mechanical loading. The main feature of this theory is that, in addition to including the transverse shear deformation and thickness stretching effects, it has only five-unknown variables in the displacement field modeling like Mindlin's theory (FSDT), yet satisfies the zero shear stress conditions on the top and bottom surfaces of the plate without requiring a shear correction factor. The static version of principle of virtual work was employed to derive the governing equations, while the bending problem for simply supported antisymmetric cross-ply laminated plates was solved by a Navier-type closed-form solution procedure. The adequacy of the proposed model is handled by considering the impact of side-to-thickness ratio on bending response of plate through several illustrative examples. Comparison of the obtained numerical results with the other shear deformation theories leads to the conclusion that the present model is more accurate and efficient in predicting the displacements and stresses of laminated composite plates.

Geometrically nonlinear analysis of FG doubly-curved and hyperbolical shells via laminated by new element

  • Rezaiee-Pajand, M.;Masoodi, Amir R.;Arabi, E.
    • Steel and Composite Structures
    • /
    • v.28 no.3
    • /
    • pp.389-401
    • /
    • 2018
  • An isoparametric six-node triangular element is utilized for geometrically nonlinear analysis of functionally graded (FG) shells. To overcome the shear and membrane locking, the element is improved by using strain interpolation functions. The Total Lagrangian formulation is employed to include the large displacements and rotations. Finding the nonlinear behavior of FG shells via laminated modeling is also the goal. A power function is employed to formulate the variation of elastic modulus through the thickness of shells. The results are presented in two ways, including the general FGM formulation and the laminated modeling. The equilibrium path is obtained by using the Generalized Displacement Control Method. Some popular benchmarks, including hyperbolical shell structures are solved to declare the correctness and accuracy of proposed formulations.