• Title/Summary/Keyword: Laminated Composite Shell

Search Result 166, Processing Time 0.024 seconds

Meshless local collocation method for natural frequencies and mode shapes of laminated composite shells

  • Xiang, Song;Chen, Ying-Tao
    • Structural Engineering and Mechanics
    • /
    • v.51 no.6
    • /
    • pp.893-907
    • /
    • 2014
  • Meshless local collocation method produces much better conditioned matrices than meshless global collocation methods. In this paper, the meshless local collocation method based on thin plate spline radial basis function and first-order shear deformation theory are used to calculate the natural frequencies and mode shapes of laminated composite shells. Through numerical experiments, the accuracy and efficiency of present method are demonstrated.

Postbuckling Behavior of Composite Laminated Cylinder under Lateral Pressure (횡방향 압력을 받는 복합적층 원통실린더의 좌굴후 거동해석)

  • 조종두;김헌주
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1994.10a
    • /
    • pp.843-846
    • /
    • 1994
  • The bucking and postbuckling behavior of composite laminated long cylinders under lateral pressure are investigated by the nonlinear finite element method. A long cylinder of 3-D shell problem is modelled as 2-D plane strain problem for analysis. And for the finite element analysis, eight nodes quadratic element is utilized. Arc-length method is adopted for the iteration and load-increment along postbuckling equilibrium path. The composite laminated cylinders in study are composed of cross-plied uniaxially reinforced shells. As a prsult, buckling load and postbuckling behavior are discussed.

  • PDF

Natural vibrations and hydroelastic stability of laminated composite circular cylindrical shells

  • Bochkareva, Sergey A.;Lekomtsev, Sergey V.
    • Structural Engineering and Mechanics
    • /
    • v.81 no.6
    • /
    • pp.769-780
    • /
    • 2022
  • This paper studies the dynamic behavior of laminated composite circular cylindrical shells interacting with a fluid. The mathematical formulation of the dynamic problem for an elastic body is developed based on the variational principle of virtual displacements and the relations of linear elasticity theory. The behavior of an ideal compressible fluid is described by the potential theory, the equations of which together with boundary conditions are transformed to a weak form. The hydrodynamic pressure exerted by the fluid on the internal surface of the shell is calculated according to the linearized Bernoulli equation. The numerical implementation of the mathematical formulation has been done using the semi-analytical finite element method. The influence of the ply angle and lay-up configurations of laminated composites on the natural vibration frequencies and the hydroelastic stability boundary have been analyzed for shells with different geometrical dimensions and under different kinematic boundary conditions set at their edges. It has been found that the optimal value of the ply angle depends on the level of filling of the shell with a fluid. The obtained results support the view that by choosing the optimal configuration of the layered composite material it is possible to change upwards or downwards the frequency and mode shape, as well as the critical velocity for stability loss over a wide range.

Analysis of Simple Supported Anisotropic Symmetric Laminated Cylindrical Shells (단순지지된 비등방성 대칭 적층 원통형 쉘의 해석)

  • Chai, Sang Youn;Yhim, Sung Soon;Chang, Suk Yoon
    • Journal of Korean Society of Steel Construction
    • /
    • v.11 no.2 s.39
    • /
    • pp.117-129
    • /
    • 1999
  • The objective of this study is to identify the advantages of composite materials and to investigate the behavior of the anisotropic symmetric laminated cylindrical shell structures. To analyze the anisotropic symmetric laminated cylindrical shell structures, the finite difference technique. that consists of forward, central and backward difference, is introduced. In this study, the degree of freedom consists of three displacements and, especially, two moments except twisting moment. It has the advantage of improving the accuracy for calculating the moments. All four edges are assumed to be simply supported. From the numerical results, it is proved that the finite difference technique can be used efficiently to analyze the anisotropic symmetric laminated cylindrical shells and gives a guide in deciding how to make use of the fiber angle the anisotropic symmetric laminated cylindrical shells.

  • PDF

A new hierarchic degenerated shell element for geometrically non-linear analysis of composite laminated square and skew plates

  • Woo, Kwang-Sung;Park, Jin-Hwan;Hong, Chong-Hyun
    • Structural Engineering and Mechanics
    • /
    • v.17 no.6
    • /
    • pp.751-766
    • /
    • 2004
  • This paper extends the use of the hierarchic degenerated shell element to geometric non-linear analysis of composite laminated skew plates by the p-version of the finite element method. For the geometric non-linear analysis, the total Lagrangian formulation is adopted with moderately large displacement and small strain being accounted for in the sense of von Karman hypothesis. The present model is based on equivalent-single layer laminate theory with the first order shear deformation including a shear correction factor of 5/6. The integrals of Legendre polynomials are used for shape functions with p-level varying from 1 to 10. A wide variety of linear and non-linear results obtained by the p-version finite element model are presented for the laminated skew plates as well as laminated square plates. A numerical analysis is made to illustrate the influence of the geometric non-linear effect on the transverse deflections and the stresses with respect to width/depth ratio (a/h), skew angle (${\beta}$), and stacking sequence of layers. The present results are in good agreement with the results in literatures.

Spatially filtered multi-field responses of piezothermoelastic cylindrical shell composites

  • Tzou, H.S.;Bao, Y.
    • Structural Engineering and Mechanics
    • /
    • v.4 no.2
    • /
    • pp.111-124
    • /
    • 1996
  • New active "intelligent" structural systems with integrated self-sensing, diagnosis, and control capabilities can lead to a new design dimension for the next generation high-performance structures and mechanical systems. However, temperature effects to the piezoelectric transducers are not fully understood. This paper is concerned with a mathematical modeling and analysis of a laminated piezothermoelastic cylindrical shell composite exposed to mechanical, electric, and thermal fields. Generic shell equations and solution procedures are derived. Contributions of spatial and time components in the mechanical, electric, and temperature excitations are discussed, and their analytical solutions derived. A laminated cylindrical shell composite with fully distributed piezoelectric layers is used in a case study; its multi-field step and impulse responses are investigated. Analyses suggest that the fully distributed actuators are insensitive to even modes due to load averaging and cancellation. Accordingly, these even modes are filtered from the total response and only the modes that are combinations of m = 1, 3, 5, ${\cdots}$ and n = 1, 3, 5, ${\cdots}$ participating in dynamic response of the shell.

Super convergent laminated composite beam element for lateral stability analysis

  • Kim, Nam-Il;Choi, Dong-Ho
    • Steel and Composite Structures
    • /
    • v.15 no.2
    • /
    • pp.175-202
    • /
    • 2013
  • The super convergent laminated composite beam element is newly derived for the lateral stability analysis. For this, a theoretical model of the laminated composite beams is developed based on the first-order shear deformation beam theory. The present laminated beam takes into account the transverse shear and the restrained warping induced shear deformation. The second-order coupling torque resulting from the geometric nonlinearity is rigorously derived. From the principle of minimum total potential energy, the stability equations and force-displacement relationships are derived and the explicit expressions for the displacement parameters are presented by applying the power series expansions of displacement components to simultaneous ordinary differential equations. Finally, the member stiffness matrix is determined using the force-displacement relationships. In order to show accuracy and superiority of the beam element developed by this study, the critical lateral buckling moments for bisymmetric and monosymmetric I-beams are presented and compared with other results available in the literature, the isoparametric beam elements, and shell elements from ABAQUS.

Effects of anisotropy and curvature on free vibration characteristics of laminated composite cylindrical shallow shells

  • Dogan, Ali;Arslan, H. Murat;Yerli, Huseyin R.
    • Structural Engineering and Mechanics
    • /
    • v.35 no.4
    • /
    • pp.493-510
    • /
    • 2010
  • This paper presents effects of anisotropy and curvature on free vibration characteristics of cross-ply laminated composite cylindrical shallow shells. Shallow shells have been considered for different lamination thickness, radius of curvature and elasticity ratio. First, kinematic relations of strains and deformation have been showed. Then, using Hamilton's principle, governing differential equations have been obtained for a general curved shell. In the next step, stress-strain relation for laminated, cross-ply composite shells has been given. By using some simplifications and assuming Fourier series as a displacement field, differential equations are solved by matrix algebra for shallow shells. The results obtained by this solution have been given tables and graphs. The comparisons made with the literature and finite element program (ANSYS).

Delamination growth analysis in composite laminates subjected to low velocity impact

  • Kharazan, Masoud;Sadr, M.H.;Kiani, Morteza
    • Steel and Composite Structures
    • /
    • v.17 no.4
    • /
    • pp.387-403
    • /
    • 2014
  • This paper presents a high accuracy Finite Element approach for delamination modelling in laminated composite structures. This approach uses multi-layered shell element and cohesive zone modelling to handle the mechanical properties and damages characteristics of a laminated composite plate under low velocity impact. Both intralaminar and interlaminar failure modes, which are usually observed in laminated composite materials under impact loading, were addressed. The detail of modelling, energy absorption mechanisms, and comparison of simulation results with experimental test data were discussed in detail. The presented approach was applied for various models and simulation time was found remarkably inexpensive. In addition, the results were found to be in good agreement with the corresponding results of experimental data. Considering simulation time and results accuracy, this approach addresses an efficient technique for delamination modelling, and it could be followed by other researchers for damage analysis of laminated composite material structures subjected to dynamic impact loading.

Bi-axial and shear buckling of laminated composite rhombic hypar shells

  • Chaubey, Abhay K.;Raj, Shubham;Tiwari, Pratik;Kumar, Ajay;Chakrabarti, Anupam;Pathak, K.K.
    • Structural Engineering and Mechanics
    • /
    • v.74 no.2
    • /
    • pp.227-241
    • /
    • 2020
  • The bi-axial and shear buckling behavior of laminated hypar shells having rhombic planforms are studied for various boundary conditions using the present mathematical model. In the present mathematical model, the variation of transverse shear stresses is represented by a second-order function across the thickness and the cross curvature effect in hypar shells is also included via strain relations. The transverse shear stresses free condition at the shell top and bottom surfaces are also satisfied. In this mathematical model having a realistic second-order distribution of transverse shear strains across the thickness of the shell requires unknown parameters only at the reference plane. For generality in the present analysis, nine nodes curved isoparametric element is used. So far, there exists no solution for the bi-axial and shear buckling problem of laminated composite rhombic (skew) hypar shells. As no result is available for the present problem, the present model is compared with suitable published results (experimental, FEM, analytical and 3D elasticity) and then it is extended to analyze bi-axial and shear buckling of laminated composite rhombic hypar shells. A C0 finite element (FE) coding in FORTRAN is developed to generate many new results for different boundary conditions, skew angles, lamination schemes, etc. It is seen that the dimensionless buckling load of rhombic hypar increases with an increase in c/a ratio (curvature). Between symmetric and anti-symmetric laminations, the symmetric laminates have a relatively higher value of dimensionless buckling load. The dimensionless buckling load of the hypar shell increases with an increase in skew angle.