• 제목/요약/키워드: Laminar-turbulent transition

검색결과 86건 처리시간 0.023초

원통 및 구형교반조에서의 2단 Paddle 임펠러에 대한 소요동력 (Power Consumption for Double-Stage Paddle Impeller in Cylindrical and Spherical Agitated Vessels)

  • 이영세;최현국;히로타카 시다
    • 한국산업융합학회 논문집
    • /
    • 제9권4호
    • /
    • pp.247-253
    • /
    • 2006
  • Power consumption for double-stage paddle impeller in spherical and cylindrical agitated vessel was measured over a wide range of Reynolds number from laminar to turbulent flow regions. The power correlation was obtained which was applied to both spherical and cylindrical vessel, when the apparent diameter of the spherical vessel was equal to the diameter of the cylindrical vessel which had a height equal to its diameter and had the same volume as the spherical vessel. The power consumption for the double-stage impeller was dependent upon the distance of among the impeller in the agitated vessels, as follows: $$f/2={\frac{C_L}{Re_G}}+{\frac{Ct}{2}}({\frac{C_tr}{Re_g}}+Re_g)^{-m}$$

  • PDF

대형 틸팅패드 저어널베어링의 THD 성능에 관한 실험적 연구 (Experimental Investigation on the THD Preformance of a Large Tilting Pad Journal Bearing)

  • 하현천;김경웅;김영춘;김호종
    • Tribology and Lubricants
    • /
    • 제9권2호
    • /
    • pp.29-35
    • /
    • 1993
  • The thermohydrodynamic(THD) performance of a large tilting pad journal bearing in laminar and turbulent flow regions is investigated experimentally. The continuous shaft surface temperature, and bearing surface temperature are measured along with the shaft speed and the bearing load for various flow rates. It is observed that the shaft surface temperature is constant in the circumferential direction and increases with the increase of shaft speed in both low and high shaft speed region, however, there exist transition region where the shaft surface temperature decreases with the increase of shaft speed. When the turbulence occurs in the lubricant film, both the inlet and maximum bearing surface temperature steeply increase and the temperature gradient in the circumferential direction decreases.

천이경계층에서의 간헐도 측정에 관한 실험적 연구 (Experimental Study on Measuring the Intermittency in the Transitional Boundary Layer)

  • 임효재;안재용;백성구;정명균
    • 설비공학논문집
    • /
    • 제15권1호
    • /
    • pp.9-18
    • /
    • 2003
  • An experimental study was performed to investigate the turbulence intermittency measuring methods across the boundary layer in the transition region. A single type hot-wire probe was used to measure instantaneous streamwise velocities in laminar, transitional and turbulent boundary layer To estimate wall shear stresses on the flat plate, near wall mean velocities are applied to the principle of CPM. Distribution of intermittency factor is obtained by dual-slope method and compared to the results of four methods,$\'{u},\;\{U}$, TERA and M-TERA method. In these methods, M-TERA shows a good agreement in the near wall region. However, the result of M-TERA method shows that intermittency factor is underestimated in the outer part and outside of the boundary layer and the dimensional constant of M-TERA method should be changed appropriately depending on measuring point.

HOMOCLINIC ORBITS IN TRANSITIONAL PLANE COUETTE FLOW

  • Lustro, Julius Rhoan T.;Kawahara, Genta;van Veen, Lennaert;Shimizu, Masaki
    • 한국전산유체공학회지
    • /
    • 제20권4호
    • /
    • pp.58-62
    • /
    • 2015
  • Recent studies on wall-bounded shear flow have emphasized the significance of the stable manifold of simple nonlinear invariant solutions to the Navier-Stokes equation in the formation of the boundary between the laminar and turbulent regions in state space. In this paper we present newly discovered homoclinic orbits of the Kawahara and Kida(2001) periodic solution in plane Couette flow. We show that as the Reynolds number decreases a pair of homoclinic orbits move closer to each other until they disappear to exhibit homoclinic tangency.

평면제트와 충돌면과의 거리변화에 따른 열전달 특성 (Heat Transfer characteristics of distance between impinging surface and a plane jet)

  • 김동건
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제22권5호
    • /
    • pp.588-594
    • /
    • 1998
  • Heat transfer characteristics of distance between impinging surface and a plane jet were experi-mentally investigated. The local heat transfer coefficients were measured by a thermochromic liq-uid crystal(TLC) The jet Reynolds number studied was varied over the range from 10,000310 to 30,000310 the nozzle-to-plate distance (H/B) from 4 to 10. It was observed that the Nusselt number increases with Reynolds number the occurrence of the secondary peak in the Nusselt number is within the potential core region the potential core of the jet flow can reach the impinging surface so that the wall jet can a transition from laminar to turbulent flow resulting in a sudden increase in the heat transfer rate.

  • PDF

안쪽 축이 회전하는 환형관내 천이유동에 관한 연구 (A Study on the Transitional Flows in a Concentric Annulus with Rotating Inner Cylinder)

  • 김영주;황영규;우남섭
    • 설비공학논문집
    • /
    • 제14권10호
    • /
    • pp.833-843
    • /
    • 2002
  • The present experimental and numerical investigations are performed for the characteristics of transitional flow in a concentric annulus with a diameter ratio of 0.52, whose outer cylinder is stationary and inner one rotating. The pressure losses and skin- friction coefficients have been measured for the fully developed flow of water and glycerine-water solution (44%) with the inner cylinder rotating at speed of 0∼600 nm, respectively. The transitional flow has been examined by the measurement of pressure losses to reveal the relation of the Reynolds and Rossby numbers with the skin-friction coefficients. The occurrence of transition has been checked by the gradient changes of pressure losses and skin-friction coefficients with respect to the Reynolds numbers. The increasing rate of skin-friction coefficient due to the rotation is uniform for laminar flow regime, whereas it is suddenly reduced for transitional flow regime and, then, it is gradually declined for turbulent flow regime.

원형단면 실린더를 지나는 유동에 대한 자유류 난류강도의 영향 (Effects of Freestream Turbulence Intensity on the Flow Past a Circular Cylinder)

  • 황종연;양경수;이승수;이준식;이상산
    • 대한기계학회논문집B
    • /
    • 제28권8호
    • /
    • pp.953-960
    • /
    • 2004
  • In this study, the effects of freestream turbulence intensity on laminar-turbulent transition of separated shear layers in the wake of a circular cylinder are investigated using an immersed boundary method and LES. It is shown that the present numerical results without freestream turbulence for Re=3,900 based on bulk mean velocity and the cylinder diameter are in good agreement with other authors' experimental observations and numerical results, verifying our numerical methodology. Then a 'prescribed power spectrum' method is imposed to generate isotropic turbulence at the inlet of the computational domain at each time step. The principal effects of freestream turbulence intensity on flow statistics are investigated for Re=3,900. Statistical study reveals that the Reynolds stresses in the near-wake region gradually increase, and transition occurs further upstream, as the turbulence intensity increases. On the other hand, the bubble size behind the cylinder decreases as the turbulence intensity increases, which indicates that the freestream turbulence helps mean velocity be quickly recovered.

Numerical investigation of turbulence models with emphasis on turbulent intensity at low Reynolds number flows

  • Musavir Bashir;Parvathy Rajendran;Ambareen Khan;Vijayanandh Raja;Sher Afghan Khan
    • Advances in aircraft and spacecraft science
    • /
    • 제10권4호
    • /
    • pp.303-315
    • /
    • 2023
  • The primary goal of this research is to investigate flow separation phenomena using various turbulence models. Also investigated are the effects of free-stream turbulence intensity on the flow over a NACA 0018 airfoil. The flow field around a NACA 0018 airfoil has been numerically simulated using RANS at Reynolds numbers ranging from 100,000 to 200,000 and angles of attack (AoA) ranging from 0° to 18° with various inflow conditions. A parametric study is conducted over a range of chord Reynolds numbers for free-stream turbulence intensities from 0.1 % to 0.5 % to understand the effects of each parameter on the suction side laminar separation bubble. The results showed that increasing the free-stream turbulence intensity reduces the length of the separation bubble formed over the suction side of the airfoil, as well as the flow prediction accuracy of each model. These models were used to compare the modeling accuracy and processing time improvements. The K- SST performs well in this simulation for estimating lift coefficients, with only small deviations at larger angles of attack. However, a stall was not predicted by the transition k-kl-omega. When predicting the location of flow reattachment over the airfoil, the transition k-kl-omega model also made some over-predictions. The Cp plots showed that the model generated results more in line with the experimental findings.

The Review of Studies on Pressure Drop and Heat Transfer In Microchannels

  • Hwang, Yun-Wook;Kim, Min-Soo
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • 제13권1호
    • /
    • pp.51-60
    • /
    • 2005
  • This paper reviews the studies on the pressure drop and the heat transfer in microchannels. Although a lot of studies about the single-phase flow have been done until now, conflicting results are occasionally reported about flow transition from laminar flow to turbulent flow, friction factor, and Nusselt number. Some studies reported the early flow transition due to relatively greater wall effect like surface roughness, but the other studies showed that the flow transition occurred at the Reynolds number of about 2300 and the early flow transition might be due to less accurate measurement of the channel geometry. Also, there have been arguments whether the conventional relation based upon continuum theory can be applied to the fluid flow and the heat transfer in microchannels without modification or not. The studies about the two-phase flow in microchannels have been mostly about investigating the flow pattern and the pressure drop in rectangular channels using two-component, two-phase flow like air/water mixture. Some studies proposed correlations to predict two-phase flow pressure drop in microchannels. They were mostly based on Lockhart-Martinelli model with modification on C-coefficient, which was dependent on channel geometry, Reynolds number, surface tension, and so on. Others investigated the characteristics of flow boiling heat transfer in microchannels with respect to test parameters such as mass flux, heat flux, system pressure, and so on. The existing studies have not been fully satisfactory in providing consistent results about the pressure drop and the heat transfer in microchannels. Therefore, more in-depth studies should be done for understanding the fundamentals of the transport phenomena in the microchannels and giving the basic guidelines to design the micro devices.

곡관에서의 층류 유동 및 열전달에 관한 수치해석 연구 (Numerical Study of Laminar Flow and Heat Transfer in Curved Pipe Flow)

  • 강창우;양경수
    • 대한기계학회논문집B
    • /
    • 제37권10호
    • /
    • pp.941-951
    • /
    • 2013
  • 축방향으로 벽면에서 일정한 열 유속의 경계조건을 갖는 곡관 유동에서 유동장 및 온도장에서의 Dean 수와 곡률의 영향을 알아보기 위한 층류 유동 및 열전달에 관한 3차원 수치모사를 수행하였다. 연구에서 수행된 레이놀즈 수의 범위는 100~4000이며 Prandtl 수는 0.71이다. 곡률 비는 0.01, 0.025, 0.05 그리고 0.1이다. 본 연구에서 계산된 축방향 속도 및 온도 분포, 국소 Nusselt 수는 기존의 수치 및 실험 결과들과 잘 일치하였다. 유동 및 열전달에 대한 곡률의 영향을 알아보기 위하여 저항계수 및 열전달 계수가 계산되었고 기존의 이론 및 실험 연구의 결과들과 비교하였다. Dean 수와 Prandtl 수에 의한 평균 Nusselt 수의 관계식을 유도하였다. 또한 곡률의 변화에 따른 난류 유동으로 천이하는 임계 레이놀즈 수의 변화를 알아보았다.