• Title/Summary/Keyword: Laminar flow

Search Result 936, Processing Time 0.022 seconds

Measurements of the Burning Velocities of Flamelets in a Turbulent Premixed Flame

  • Furukawa, Junichi;Noguchi, Yoshiki;Hirano, Toshisuke;Williams, Forman A.
    • Journal of the Korean Society of Combustion
    • /
    • v.6 no.2
    • /
    • pp.65-70
    • /
    • 2001
  • To investigate statistics of flamelet in a turbulent premixed flame and to obtain components of their burning velocities in a vertical plane above a pipe-flow burner, the local motion of flamelets with respect to gas are measured by specially arranged diagnostics, composed of an electrostatic probe with four identical sensors and a two-color four-beam LDV system. With this technique, the three-dimensional local flame-front-velocity vector is measured by the electrostatic probe for the first time, and simultaneously the axial and radial components of the local gas-velocity vector in a vertical plane above the vertically oriented burner are measured by the LDV system. Two components of burning velocities of planar flamelets can be obtained from these results and are found to be distributed over different directions and to range in magnitude from nearly zero to a few times the planar, unstrained adiabatic laminar burning velocity measured in the unburnt gas. It may be concluded from these results that turbulence exerts measurable influences on flamelets and causes at least some of them to exhibit increased burning velocity.

  • PDF

Fluid dynamical characteristics of microencapsulated phase change material slurries (미립잠열슬러리의 유체역학적 특성연구)

  • 이효진;이승우;이재구
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.11 no.4
    • /
    • pp.549-559
    • /
    • 1999
  • An experimental study was peformed to measure the viscosity of microencapsulated PCM slurries as the functions of its concentration and temperature, and also influence to its fluid dynamics. For the viscosity measurement, a rotary type viscometer, which was equipped with temperature control system, was adopted. The slurry was mixed with water and Sodium Lauryl Sulphate as a surfactant by which its suspended particles were dispersed well without the segregation of particles during the experiment. The viscosity was increased as the concentration of MicroPCM particle added. The surfactant increased 5% of the viscosity over the working fluid without particles. Experiments were proceeded by changing parameters such as PCM particles'concentration as well as the temperature of working fluid. As a result, a model to the functions of temperature for the working fluid and its particle concentration is proposed. The proposed model, for which its standard deviation shows 0.8068, is agreed well with the reference's data. The pressure drop was measured by U-tube manometer, and then the friction factor was obtained. It was noted that the pressure drop was not influenced by the state of PCM phase, that is solid or liquid in its core materials at their same concentration. On the other hand, it was described that the pressure drop of the slurry was much increased over the working fluid without particles. A friction factor was placed on a straight line in all working fluids of the laminar flow regardless of existing particles as we expected.

  • PDF

Dual Reciprocity Boundary Element Analysis for the Graetz Problem in Circular Duct (원형 덕트유동에서의 Graetz 문제에 대한 이중교환 경계요소 해석)

  • Choi, Chang Yong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.2
    • /
    • pp.243-253
    • /
    • 1999
  • The dual reciprocity boundary element method (DRBEM) is used to solve the Graetz problem of laminar flow inside circular duct. In this method the domain integral tenn of boundary integral equation resulting from source term of governing equation is transformed into equivalent boundary-only integrals by using the radial basis interpolation function, and therefore complicate domain discretization procedure Is completely removed. Velocity profile is obtained by solving the momentum equation first and then, using this velocities as Input data, energy equation Is solved to get the temperature profile by advancing from duct entrance through the axial direction marching scheme. DRBEM solution is tested for the uniform temperature and heat flux boundary condition cases. Local Nusselt number, mixed mean temperature and temperature profile inside duct at each dimensionless axial location are obtained and compared with exact solutions for the accuracy test Solutions arc in good agreement at the entry region as well as fully developed region of circular duct, and their accuracy are verified from error analysis.

On Damping of Irregular Waves Passing over a Permeable Seabeds (해저투수층을 통과하는 불규칙파의 파랑감쇠에 관한 연구)

  • Hur, Dong-Soo;Choi, Dong-Seok;Lee, Woo-Dong;Bae, Ki-Seong
    • Journal of Ocean Engineering and Technology
    • /
    • v.21 no.6
    • /
    • pp.34-41
    • /
    • 2007
  • The present study investigates numerically damping characteristics of irregular waves passing over a permeable seabeds. At first, the numerical model, which is able to consider the flow through a porous medium with inertial, laminar and turbulent resistance terms and determine the eddy viscosity with LES turbulent model, is validated by comparing with existing experimental data. And then, the numerical test on irregular wave damping over a permeable seabeds is performed in case that wave and flume conditions are changed. It is revealed from the numerical results that the more porosity and mean grain are increased, the more wave damping is increased. Also, the effect of wave period on damping of irregular waves over a permeable seabed is discussed.

Optimum Design of Microchannel Heat Sinks (마이크로채널 방열블럭의 최적설계)

  • Jo, Yeong-Jin;Choe, Chung-Hyeon;Kim, Jae-Jung;Lee, Jae-Heon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.1
    • /
    • pp.117-123
    • /
    • 2001
  • In present study a methodology has been developed and applied for the optimum design and performance evaluation of microchannel heat sinks. The optimum design parameters include channel number and fin thickness. For a trial model of 127mm in length, 52.5mm in width, 16mm in height and 2.5mm in base thickness, the optimum channel number and the fin thinckness have been determined to be of 194 and 0.08359mm, respectively in laminar flow region. Performance of the optimally designed microchannel heat sinks has been compared with those having 50% and 150% of the number of channels. The results showed that the 50% and 150% designs increased the pumping power by 200% and 150%, respectively.

A study on the hydrofoil section shapes in consideration of viscous effects for marine propeller blades (점성의 영향을 고려한 선박 추진기용 익형의 단면 형상에 관한 연구)

  • 김시영
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.12 no.2
    • /
    • pp.46-56
    • /
    • 1988
  • The author has presented a new approach to design hydrofoil section shapes in consideration of viscous for marine propeller blades. In suction sides of propeller blades, the pressure distribution on hydrofoil sections in non-cavitating flow should be examined before the study of cavitation characteristics. Generally, the calculation results for hydrofoil conformal mapping method by which neglect viscous effects do not agree with experimental ones. Moreover, another papers reported that laminar separation bubble and transition played an important role on the cavitation inception. From these considerations, it is very important to study the viscous effects of the hydrofoil sections, especially the mechanism separation bubble and the apparent thickness of hydrofoil section. Therefore, the new design method of hydrofoil sections in consideration of viscous effects in comparison to the airfoil section should be studied. In designing the new hydrofoil section shapes, based on Eppler theory, the author tried to give the peak negative pressure in leading edge region for NACA airfoil in consideration of viscous effects without turbulent boundary layer separation as much as possible. The design method was verified from the fact that the boundary characteristics was improved and the lifts of new hydrofoils were slightly in creased in comparison to these of NACA 16-012 symmetrical, NACA 4412 non-symmetrical airfoils.

  • PDF

An Experimental Study of the Near-Wake Characteristics of an Oscillating Elliptic Airfoil (진동하는 타원형 에어포일의 근접후류 특성 연구)

  • Chang, Jo-Won;Shon, Myong-Hwan;Eun, Hee-Bong
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1795-1800
    • /
    • 2003
  • An experimental study was carried out to investigate near-wake characteristics of an elliptic airfoil oscillating in pitch. The airfoil was sinusoidally pitched about the half chord point between $-5^{\circ}C$ and $+25^{\circ}C$ angles of attack at the freestream velocities of 3.4 and 23.1 m/s The corresponding Reynolds numbers based on the chord length were $3.3{\times}10^4$ and $2.2{\times}10^5$, respectively. A hot-wire anemometer was used to measure the near-wake flow variable at the reduced frequency of 0.1. Ensemble-averaged velocity and turbulence intensity profile were presented to examine the near-wake characteristics depending on the Reynolds number. The axial velocity deficit in the near-wake region tend to decrease with the increase in the Reynolds number a found in many stationary airfoil test . Turbulence intensity in the near-wake region have a tendency to decrease with the increase in the Reynolds number during the pitch-up motion, whereas it shows different feature during the pitch-down motion either the laminar boundary layer or turbulent boundary layer separation.

  • PDF

Study on Noise Characteristic of Open Cavity with Cross-Correlation Analysis (Cross-Correlation 해석을 통한 공동의 소음 특성 연구)

  • Heo Dae Nyoung;Kim Jae Wook;Lee Duck Joo
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.755-758
    • /
    • 2002
  • The physical phenomena of rectangular open cavity are numerically investigated in this paper Two-dimensional cavity problems with laminar boundary layers in upstream are simulated by using the compressible Wavier-Stokes equations. The high-order and high-resolution numerical schemes are used for the evaluation of spatial derivatives and the time integration. Cross-correlation is used to analyze the characteristics of wave propagation along time and spatial. Sudden phase shifting of 90 degrees is appeared near downstream edge, and this is coincident with the phase lag suggested in original Rossiter's equation. The results give a further understanding of the physical phenomenon of noise generation, and the resonance of flow and acoustic in cavity. Moreover, modified Rossiter's equation, which is more accurate and can be applied in various conditions, is suggested. The distance from the point of vortex generation to the point of vortex collapsing acts as effective distance of cavity resonance, and the phase difference between the point of vortex collapsing and the point of acoustic source acts as phase lag. The mechanism of acoustic generation is fully understood in this paper. The mechanism of acoustic generation is fully understood in this paper.

  • PDF

Numerical Study on the Characteristics of Natural Convection Flows in a Cubical Cavity (3차원 정육면체 캐비티내 자연대류 유동 특성에 관한 수치해석적 연구)

  • Myong Hyon-Kook
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.4 s.247
    • /
    • pp.337-342
    • /
    • 2006
  • Natural convection flows in a cubical air-filled cavity that has one pair of opposing faces isothermal at different temperatures, $T_h\;and\;T_c$, respectively, the remaining four faces having a linear variation from $T_c\;to\;T_h$ are numerically simulated by a solution code(PowerCFD) using unstructured cell-centered method. Special attention is paid to three-dimensional flow and thermal characteristics according to the variation of inclination angle $\theta$ of the isothermal faces from horizontal: namely $\theta=0^{\circ},\;15^{\circ},\;30^{\circ},\;45^{\circ},\;50^{\circ},\;60^{\circ},\;75^{\circ}\;and\;90^{\circ}$. Comparisons of the average Nusselt number at the cold face are made with experimental benchmark results found in the literature. It is demonstrated that the average Nusselt number at the cold face has a maximum value around the inclination angle of $50^{\circ}$. It is also found that the code is capable of producing accurately the nature of the laminar convection in a cubical air-filled cavity with differentially heated walls.

Analysis on Particle Deposition onto a Heated Rotating Disk with Electrostatic Effect (정전효과가 있는 가열 회전원판으로의 입자침착 해석)

  • 유경훈
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.5
    • /
    • pp.424-432
    • /
    • 2002
  • Numerical analysis has been conducted to characterize deposition rates of aerosol particles onto a heated, rotating disk with electrostatic effect under the laminar flow field. The particle transport mechanisms considered were convection, Brownian diffusion, gravitational settling, thermophoresis and electrophoresis. The aerosol particles were assumed to have a Boltzmann charge distribution. The electric potential distribution needed to calculate local electric fields around the disk was calculated from the Laplace equation. The Coulomb, the image, the dielectrophoretic and the dipole-dipole forces acting on a charged particle near the conducting rotating disk were included in the analysis. The averaged particle deposition vetocities and their radial distributions on the upper surface of the disk were calculated from the particle concentration equation in a Eulerian frame of reference, along with a rotation speed of 0∼1,000rpm, a temperature difference of 0∼5K and a charged disk voltage of 0∼1000V.Finally, an approximate deposition velocity model for the rotating disk was suggested. The present numerical results showed relatively good agreement with the results of the present approximate model and the available experimental data.